As a result of the high economic growth in GMS (Greater Mekong Sub-region) countries, bank branches have now expanded at high rate. The expansion of new buildings, however, has not considered energy, especially ligh...As a result of the high economic growth in GMS (Greater Mekong Sub-region) countries, bank branches have now expanded at high rate. The expansion of new buildings, however, has not considered energy, especially lighting system, in the design stage. This paper presents the optimal energy management design of lighting system for the bank buildings in the countries along Mekong River, namely China, Vietnam, Cambodia, Myanmar, Laos and Thailand. The lighting system is considered in the study as most of the countries use T8 fluorescent luminaires. The LCC (life cycle cost) method has been considered for the installation and operational cost. The assumed benefit-cost ratio analysis comprises of the lifetime cycle, price of fluorescent lamps, electricity unit price, operating times and hours of lighting bulb. The T8 fluorescent luminaires with low watt loss ballast are compared with T5 fluorescent luminaires and LED lamps. Electricity rates and the cost of the investment are considered to determine the suitable selection of the lighting system in each GMS country.展开更多
During the late Miocene(~5.5 Ma), a large-scale submarine slide with an area of approximately 18000 km^2 and a maximum thickness of 930 m formed in the deep-water region of the Qiongdongnan Basin. The large-scale subm...During the late Miocene(~5.5 Ma), a large-scale submarine slide with an area of approximately 18000 km^2 and a maximum thickness of 930 m formed in the deep-water region of the Qiongdongnan Basin. The large-scale submarine slide has obvious features in seismic profile, with normal faults in the proximal region, escarpments at the lateral boundary, and a pronounced shear surface at the base. The internal seismic reflections are chaotic and enclosed by parallel and sub-parallel seismic events.The main direction of sediment transport was from south to north and the main sediment source was the southern region of the Qiongdongnan Basin, which is located in the east of the Indo-China Peninsula and the north of the Guangle uplift. In this region,late Miocene strike-slip reversal of the Red River Fault, uplift and increased erosion of the Indo-China Peninsula, and an abrupt rise in the rate of deposition in the western part of the South China Sea provided the basic conditions and triggering mechanism for the large-scale submarine slide. The discovery of the large-scale submarine slide provides sedimentological evidence for the tectonic event of late Miocene strike-slip reversal of the Red River Fault. It can also be inferred that the greatest tectonic activity during the process of the Red River Fault reversal occurred at ~5.5 Ma from the age of top surface of the submarine slide.展开更多
文摘As a result of the high economic growth in GMS (Greater Mekong Sub-region) countries, bank branches have now expanded at high rate. The expansion of new buildings, however, has not considered energy, especially lighting system, in the design stage. This paper presents the optimal energy management design of lighting system for the bank buildings in the countries along Mekong River, namely China, Vietnam, Cambodia, Myanmar, Laos and Thailand. The lighting system is considered in the study as most of the countries use T8 fluorescent luminaires. The LCC (life cycle cost) method has been considered for the installation and operational cost. The assumed benefit-cost ratio analysis comprises of the lifetime cycle, price of fluorescent lamps, electricity unit price, operating times and hours of lighting bulb. The T8 fluorescent luminaires with low watt loss ballast are compared with T5 fluorescent luminaires and LED lamps. Electricity rates and the cost of the investment are considered to determine the suitable selection of the lighting system in each GMS country.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41576049, 91228208, 91028007 & 91428309)
文摘During the late Miocene(~5.5 Ma), a large-scale submarine slide with an area of approximately 18000 km^2 and a maximum thickness of 930 m formed in the deep-water region of the Qiongdongnan Basin. The large-scale submarine slide has obvious features in seismic profile, with normal faults in the proximal region, escarpments at the lateral boundary, and a pronounced shear surface at the base. The internal seismic reflections are chaotic and enclosed by parallel and sub-parallel seismic events.The main direction of sediment transport was from south to north and the main sediment source was the southern region of the Qiongdongnan Basin, which is located in the east of the Indo-China Peninsula and the north of the Guangle uplift. In this region,late Miocene strike-slip reversal of the Red River Fault, uplift and increased erosion of the Indo-China Peninsula, and an abrupt rise in the rate of deposition in the western part of the South China Sea provided the basic conditions and triggering mechanism for the large-scale submarine slide. The discovery of the large-scale submarine slide provides sedimentological evidence for the tectonic event of late Miocene strike-slip reversal of the Red River Fault. It can also be inferred that the greatest tectonic activity during the process of the Red River Fault reversal occurred at ~5.5 Ma from the age of top surface of the submarine slide.