For a channel-shoal system in a funnel-shaped basin the impact of dredging and dumping is investigated using a complex process-based model. First, the residual flow and sediment transport circulations are analysed for...For a channel-shoal system in a funnel-shaped basin the impact of dredging and dumping is investigated using a complex process-based model. First, the residual flow and sediment transport circulations are analysed for the channel-shoal pattern, which has emerged after a longterm model simulation. Results are compared to the Western Scheldt estuary, which forms the inspiration for this study. Subsequently, different dredge and dump scenarios are modelled, according to a conceptual model, in which ebb- and flood-channels and enclosed shoals form morphodynamic units (cells) with their own sediment circulation. Model results show that dumping sediment in a channel further reduces the channel depth and induces erosion in the opposite channel, which enhances tilting of the cross-section of the cell and eventually can lead to the degeneration of a multiple channel system into a single channel. The impact of different dredging and dumping cases agrees with results from a stability analysis. This means that this type of model applied to a realistic geometry can potentially be used for better prediction of the impact of human interventions.展开更多
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu...The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.展开更多
The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume expe...The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume experiment with adjustable width and a depth-averaged two-dimension numerical model were used to analyze the variations of flow parameters. Our experimental results showed that flow velocity gradually increased with decreasing water depth in converging region, and decreased with increasing water depth in diverging zones. It was also found that the turbulence intensity laws in three directions were not agreed with the theoretical relationships proposed by Nezu and Nakagawa in 1993 in straight open channel flows. The flow in the channel with varying width may change from the supercritical flow to the subcritical flow as a function of Froude number. Our numerical simulations with different flow rates showed that most of the hydraulic jumps in diverging region were submerged jump and the degree of submergence increased with increasing flow rate in gradual channel transition. When the flow rate increased, the range of supercritical flow rapidly decreased and the flow changed from the supercritieal condition to the subcritical condition in diverging sections.展开更多
River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features i...River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features involved and the responses to the imposed changes. In this paper, an overview of river morphology is presented from the geomorphic viewpoint. Included in the scope are the regime concept, river channel classification, thresholds in river morphology, and geomorphic analysis of river responses. Analytical approach to river morphology based on the physical principles for the hydraulics of flow and sediment transport processes is also presented. The application of analytical river morphology is demonstrated by an example. Modeling is the modern technique to determine both short-term and long-term river channel responses to any change in the environment. The physical foundation of fluvial process-response must be applied in formatting a mathematical model. A brief introduction of the mathematical model FLUVIAL-12 is described.展开更多
According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research...According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.展开更多
The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocit...The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocity and the discharge capacity in compound channels. In this article,under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain,the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance,the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF),the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width,was established,And hence the conveyance capacity in compound channels was calculated with Liu and Dong’s method. The computed results show that the momentum transfer coefficient relationship obtained is viable.展开更多
Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide inste...Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.展开更多
文摘For a channel-shoal system in a funnel-shaped basin the impact of dredging and dumping is investigated using a complex process-based model. First, the residual flow and sediment transport circulations are analysed for the channel-shoal pattern, which has emerged after a longterm model simulation. Results are compared to the Western Scheldt estuary, which forms the inspiration for this study. Subsequently, different dredge and dump scenarios are modelled, according to a conceptual model, in which ebb- and flood-channels and enclosed shoals form morphodynamic units (cells) with their own sediment circulation. Model results show that dumping sediment in a channel further reduces the channel depth and induces erosion in the opposite channel, which enhances tilting of the cross-section of the cell and eventually can lead to the degeneration of a multiple channel system into a single channel. The impact of different dredging and dumping cases agrees with results from a stability analysis. This means that this type of model applied to a realistic geometry can potentially be used for better prediction of the impact of human interventions.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.
基金supported by the projects of Sichuan Province Science and technology support program (Grant No.2014SZ0163)National Natural Science Foundation of China (Grant No.41171016 and 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University (SKHL1309)
文摘The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume experiment with adjustable width and a depth-averaged two-dimension numerical model were used to analyze the variations of flow parameters. Our experimental results showed that flow velocity gradually increased with decreasing water depth in converging region, and decreased with increasing water depth in diverging zones. It was also found that the turbulence intensity laws in three directions were not agreed with the theoretical relationships proposed by Nezu and Nakagawa in 1993 in straight open channel flows. The flow in the channel with varying width may change from the supercritical flow to the subcritical flow as a function of Froude number. Our numerical simulations with different flow rates showed that most of the hydraulic jumps in diverging region were submerged jump and the degree of submergence increased with increasing flow rate in gradual channel transition. When the flow rate increased, the range of supercritical flow rapidly decreased and the flow changed from the supercritieal condition to the subcritical condition in diverging sections.
文摘River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features involved and the responses to the imposed changes. In this paper, an overview of river morphology is presented from the geomorphic viewpoint. Included in the scope are the regime concept, river channel classification, thresholds in river morphology, and geomorphic analysis of river responses. Analytical approach to river morphology based on the physical principles for the hydraulics of flow and sediment transport processes is also presented. The application of analytical river morphology is demonstrated by an example. Modeling is the modern technique to determine both short-term and long-term river channel responses to any change in the environment. The physical foundation of fluvial process-response must be applied in formatting a mathematical model. A brief introduction of the mathematical model FLUVIAL-12 is described.
基金support from the Technology Pillar Program during the"Eleventh Five-year Plan"Period (No.2006BAB05B02No.2006BAB05B03) are acknowledged
文摘According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50579040, 50579041).
文摘The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains,the cross-sectional mean velocity and the discharge capacity in compound channels. In this article,under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain,the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance,the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF),the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width,was established,And hence the conveyance capacity in compound channels was calculated with Liu and Dong’s method. The computed results show that the momentum transfer coefficient relationship obtained is viable.
基金supported by the "Creative Research Group" of National Natural Science Foundation of China (Grant No. 41021064)the National Basic Scientific Research Program of Global Change (Grant No.2010CB951201)Marine Special Program for Scientific Research on Public Causes (Grant No. 200705019)
文摘Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.