In this work,we show for the first time that high-silica zeolites(MFI,TON,MTT,and*MRE)could be synthesized from a combined strategy of both zeolite seeding and alcohol filling in the absence of organic structure-direc...In this work,we show for the first time that high-silica zeolites(MFI,TON,MTT,and*MRE)could be synthesized from a combined strategy of both zeolite seeding and alcohol filling in the absence of organic structure-directing agents(OSDAs).High-silica ZSM-5 zeolites with Si/Al ratios ranging from 38 to 240(TF-Al-ZSM-5)could be synthesized via this route.The key to the success of this technique was the employment of an aluminosilicate precursor with a fully 4-coordinated aluminum species as the initial source,wherein the rearrangement and condensation of the silicate species,rather than the aluminate species,occurred during zeolite crystallization.In addition,heteroatoms,such as Fe and B,could be incorporated into the zeolite frameworks.Catalytic tests for the methanol-to-propylene(MTP)reaction exhibited good catalytic performance for TF-Al-ZSM-5,which was comparable to that of the aluminosilicate ZSM-5 zeolite synthesized with OSDAs.Hence,this method offers viable opportunities for the industrial production and catalytic application of high-silica zeolites in the future.展开更多
ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning elec...ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.展开更多
Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals ...Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals based on the relationship between the crystallization time and temperature in the Arrhenius equation. Compared to the conventional hydrothermal synthesis of zeolite omega(72 h at room temperature and 240 h at 100℃, MAZ-100), the crystallization of zeolite omega presented in this work only requires a very short time interval(5 h at 180℃, MAZ-180). Physicochemical characterizations, including XRD, SEM, N2 sorption isotherms, and 27 Al MAS NMR show that the product of zeolite omega(MAZ-180) has good crystallinity and uniform nanocrystals. More importantly, after the loading of Pt nanoparticles(0.5 wt%), the Pt/H-MAZ-180 catalyst exhibits higher isomer selectivity and lower cracking selectivity than those of the Pt/H-MAZ-100 catalyst in the hydroisomerization of n-dodecane. These results suggest the potential applications of these omega nanocrystals as supporting catalyst compounds in industrial processes.展开更多
A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μ...A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μm in size,based on the special sol‐gel chemistry of bridged organosilane.Epoxidation of1‐hexene and cyclohexene was used as a probe reaction to investigate the catalytic performance of the resulting materials.These TS‐1zeolite aggregates possessed both the conventional nanoparticle properties of TS‐1zeolites and variable surface hydrophilic/hydrophobic features,which enhanced the catalytic properties of hydroperoxides for alkene epoxidation.Moreover,the large aggregates effectively simplified the separation procedure during preparation and catalytic reactions.展开更多
In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the pr...In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.展开更多
文摘In this work,we show for the first time that high-silica zeolites(MFI,TON,MTT,and*MRE)could be synthesized from a combined strategy of both zeolite seeding and alcohol filling in the absence of organic structure-directing agents(OSDAs).High-silica ZSM-5 zeolites with Si/Al ratios ranging from 38 to 240(TF-Al-ZSM-5)could be synthesized via this route.The key to the success of this technique was the employment of an aluminosilicate precursor with a fully 4-coordinated aluminum species as the initial source,wherein the rearrangement and condensation of the silicate species,rather than the aluminate species,occurred during zeolite crystallization.In addition,heteroatoms,such as Fe and B,could be incorporated into the zeolite frameworks.Catalytic tests for the methanol-to-propylene(MTP)reaction exhibited good catalytic performance for TF-Al-ZSM-5,which was comparable to that of the aluminosilicate ZSM-5 zeolite synthesized with OSDAs.Hence,this method offers viable opportunities for the industrial production and catalytic application of high-silica zeolites in the future.
基金the financial support from National Natural Science Foundation of China(20776124 and 20736011)
文摘ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.
基金supported by the National Natural Science Foundation of China(91545111,91634201,21720102001)National Key Research and Development Program of China(2017YFB0702803)Shell Foundation~~
文摘Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals based on the relationship between the crystallization time and temperature in the Arrhenius equation. Compared to the conventional hydrothermal synthesis of zeolite omega(72 h at room temperature and 240 h at 100℃, MAZ-100), the crystallization of zeolite omega presented in this work only requires a very short time interval(5 h at 180℃, MAZ-180). Physicochemical characterizations, including XRD, SEM, N2 sorption isotherms, and 27 Al MAS NMR show that the product of zeolite omega(MAZ-180) has good crystallinity and uniform nanocrystals. More importantly, after the loading of Pt nanoparticles(0.5 wt%), the Pt/H-MAZ-180 catalyst exhibits higher isomer selectivity and lower cracking selectivity than those of the Pt/H-MAZ-100 catalyst in the hydroisomerization of n-dodecane. These results suggest the potential applications of these omega nanocrystals as supporting catalyst compounds in industrial processes.
基金supported by the National Natural Science Foundation of China (21503081,21503073,21403070,21707093)the National Key Research and Development Program of China (2017YFA0403102)~~
文摘A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μm in size,based on the special sol‐gel chemistry of bridged organosilane.Epoxidation of1‐hexene and cyclohexene was used as a probe reaction to investigate the catalytic performance of the resulting materials.These TS‐1zeolite aggregates possessed both the conventional nanoparticle properties of TS‐1zeolites and variable surface hydrophilic/hydrophobic features,which enhanced the catalytic properties of hydroperoxides for alkene epoxidation.Moreover,the large aggregates effectively simplified the separation procedure during preparation and catalytic reactions.
基金supported by the NationalScience Foundation of China(2006CB202508)wewould like to extend our heartfelt thanks to the RIPP’s labo-ratories engaging in XRD and FT-IR analyses for theirenergetical support and warm assistance provided to thisresearch work.
文摘In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.