期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自动谱聚类与多极端学习机模型的油井油液含水率软测量
被引量:
4
1
作者
李琨
韩莹
黄海礁
《化工学报》
EI
CAS
CSCD
北大核心
2016年第7期2925-2933,共9页
油井油液的含水率是石油生产中的一个重要参数,及时、准确的测量对提高采油生产效率具有重要的意义。针对传统人工测量所存在的不足,引入软测量技术,建立基于自动谱聚类与多极端学习机(automatic spectral clustering-multiple extreme ...
油井油液的含水率是石油生产中的一个重要参数,及时、准确的测量对提高采油生产效率具有重要的意义。针对传统人工测量所存在的不足,引入软测量技术,建立基于自动谱聚类与多极端学习机(automatic spectral clustering-multiple extreme learning machines,ASC-MELM)的软测量模型。提出一种自动谱聚类(spectral clustering,SC)算法,由改进的萤火虫算法(firefly algorithm,FA)对聚类数目和尺度参数进行优化选取,所提出的改进萤火虫算法(improved firefly algorithm,IFA)采用以一定概率跳出当前解的机制,避免传统FA过早陷入局部最优解的不足;对聚类后的不同训练子集,分别由极端学习机(extreme learning machine,ELM)建立子模型,由IFA对其中的隐含层输入权值、隐含层神经元的偏置和隐含层节点个数进行优化选取;最后,将多个子模型的结果取加权平均值输出。由国内某油田作业区一口生产井进行实例验证,结果表明所提出方法具有较高的预测精度,对于实现油井油液含水率的软测量是合理有效的。
展开更多
关键词
软测量
油井油液含水率
谱聚类
极端学习机
萤火虫算法
测量
石油
模型
下载PDF
职称材料
题名
基于自动谱聚类与多极端学习机模型的油井油液含水率软测量
被引量:
4
1
作者
李琨
韩莹
黄海礁
机构
渤海大学工学院
辽河油田分公司锦州采油厂采油作业五区
出处
《化工学报》
EI
CAS
CSCD
北大核心
2016年第7期2925-2933,共9页
基金
国家自然科学基金项目(61403040)~~
文摘
油井油液的含水率是石油生产中的一个重要参数,及时、准确的测量对提高采油生产效率具有重要的意义。针对传统人工测量所存在的不足,引入软测量技术,建立基于自动谱聚类与多极端学习机(automatic spectral clustering-multiple extreme learning machines,ASC-MELM)的软测量模型。提出一种自动谱聚类(spectral clustering,SC)算法,由改进的萤火虫算法(firefly algorithm,FA)对聚类数目和尺度参数进行优化选取,所提出的改进萤火虫算法(improved firefly algorithm,IFA)采用以一定概率跳出当前解的机制,避免传统FA过早陷入局部最优解的不足;对聚类后的不同训练子集,分别由极端学习机(extreme learning machine,ELM)建立子模型,由IFA对其中的隐含层输入权值、隐含层神经元的偏置和隐含层节点个数进行优化选取;最后,将多个子模型的结果取加权平均值输出。由国内某油田作业区一口生产井进行实例验证,结果表明所提出方法具有较高的预测精度,对于实现油井油液含水率的软测量是合理有效的。
关键词
软测量
油井油液含水率
谱聚类
极端学习机
萤火虫算法
测量
石油
模型
Keywords
soft sensor
moisture content of well oil
spectral clustering
extreme learning machine
firefly algorithm
measurement
petroleum
model
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自动谱聚类与多极端学习机模型的油井油液含水率软测量
李琨
韩莹
黄海礁
《化工学报》
EI
CAS
CSCD
北大核心
2016
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部