The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling softw...The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.展开更多
A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing c...A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.展开更多
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki...In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrog...This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrogenation process in the China's Mainland.展开更多
In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylen...In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylene projects in China after 2006 and debottlenecking and expansion of existing ethylene units China will be confronted with the major issues related with increase of feedstocks for steam cracking. Naphtha is the main feedstock for producing ethylene, and the hydrocracked tail oil is increasing its share in the steam cracker feedstock pool over recent years. This article has analyzed the possibility for maximization of steam cracking feedstock and estimated steam cracker feedstock output based on processing 5 Mt/a of different crudes including the mixed crude transferred through Lu-Ning pipeline and Arabian light crude using corresponding process technologies at the refinery.展开更多
The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technolo...The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.展开更多
Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was prod...Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was produced from SPO by esterification process using P-toluenesulfonic acid (PTSA) as acid catalyst in different dosages in presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10% wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 ℃), reaction time (30-120 min). The effects of those parameters on the yield of crude biodiesel and conversion of FFA to FAME were monitored. The optimum condition for batch esterification process was 0.75% wt/wt, 10:1 molar ratio, 60 ℃ temperature and 60 minutes reaction time.展开更多
An experimental setup for separating ginger essential oil by supercritical fluid extraction is established. The effects of the extraction pressure, temperature, CO2 flow rate and particle size of raw material on the e...An experimental setup for separating ginger essential oil by supercritical fluid extraction is established. The effects of the extraction pressure, temperature, CO2 flow rate and particle size of raw material on the extraction rate are investigated, and the optimum process conditions of supercritical CO2 extraction are determined. A mathematical simulation model is established based on the mass conservation in differential units of extraction bed. The total mass transfer driving force and the equilibrium absorption constant are evaluated by the linear driving force theory. The results from numerical simulation agree well with the experimental data.展开更多
PetroChina Lanzhou Petrochemical Company conducted commercial tests for application of two types of diesel demulsifiers, the HPL-2 and GX-02 demulsifiers, in order to solve the emulsion problem arising from caustic wa...PetroChina Lanzhou Petrochemical Company conducted commercial tests for application of two types of diesel demulsifiers, the HPL-2 and GX-02 demulsifiers, in order to solve the emulsion problem arising from caustic washing of straight-run diesel fraction obtained from atmospheric and vacuum distillation unit at the Lanzhou refinery. After addition of each demulsifier into the diesel fraction the oil content in caustic residue was apparently decreased, and discharge of waste caustic was reduced, resulting in the elimination of emulsification and a significant increase of economic benefits. When 70 ppm of the HPL-2 demulsifier was added to diesel fraction, the oil content in waste caustic exiting the second-stage caustic wash settling tank was reduced to 2.45% from 7.90 %, whereas this value was reduced to 2.81% from 5.96% with addition of the GX-02 demulsifier.展开更多
The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV)...The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4--C6 olefins contained in the FCC gasoline could react with HzS to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem- peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock, with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermodynamic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree. Based on the above-mentioned study, a reaction network and a model for prediction of sulfur compounds generated upon reaction of olefins in FCC gasoline with HES were established.展开更多
基金This project is supported by the China National Key Basis Research Project (No: G1999022512)
文摘The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.
基金Supported by the 973 Program (No. 2002CB312200)National High Tech. Project of China (863/CIMS 2004AA412050).
文摘A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
文摘This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrogenation process in the China's Mainland.
文摘In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylene projects in China after 2006 and debottlenecking and expansion of existing ethylene units China will be confronted with the major issues related with increase of feedstocks for steam cracking. Naphtha is the main feedstock for producing ethylene, and the hydrocracked tail oil is increasing its share in the steam cracker feedstock pool over recent years. This article has analyzed the possibility for maximization of steam cracking feedstock and estimated steam cracker feedstock output based on processing 5 Mt/a of different crudes including the mixed crude transferred through Lu-Ning pipeline and Arabian light crude using corresponding process technologies at the refinery.
文摘The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.
文摘Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was produced from SPO by esterification process using P-toluenesulfonic acid (PTSA) as acid catalyst in different dosages in presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10% wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 ℃), reaction time (30-120 min). The effects of those parameters on the yield of crude biodiesel and conversion of FFA to FAME were monitored. The optimum condition for batch esterification process was 0.75% wt/wt, 10:1 molar ratio, 60 ℃ temperature and 60 minutes reaction time.
文摘An experimental setup for separating ginger essential oil by supercritical fluid extraction is established. The effects of the extraction pressure, temperature, CO2 flow rate and particle size of raw material on the extraction rate are investigated, and the optimum process conditions of supercritical CO2 extraction are determined. A mathematical simulation model is established based on the mass conservation in differential units of extraction bed. The total mass transfer driving force and the equilibrium absorption constant are evaluated by the linear driving force theory. The results from numerical simulation agree well with the experimental data.
文摘PetroChina Lanzhou Petrochemical Company conducted commercial tests for application of two types of diesel demulsifiers, the HPL-2 and GX-02 demulsifiers, in order to solve the emulsion problem arising from caustic washing of straight-run diesel fraction obtained from atmospheric and vacuum distillation unit at the Lanzhou refinery. After addition of each demulsifier into the diesel fraction the oil content in caustic residue was apparently decreased, and discharge of waste caustic was reduced, resulting in the elimination of emulsification and a significant increase of economic benefits. When 70 ppm of the HPL-2 demulsifier was added to diesel fraction, the oil content in waste caustic exiting the second-stage caustic wash settling tank was reduced to 2.45% from 7.90 %, whereas this value was reduced to 2.81% from 5.96% with addition of the GX-02 demulsifier.
文摘The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4--C6 olefins contained in the FCC gasoline could react with HzS to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem- peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock, with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermodynamic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree. Based on the above-mentioned study, a reaction network and a model for prediction of sulfur compounds generated upon reaction of olefins in FCC gasoline with HES were established.