The Bakken formation has become a prominent oil resource for south-east Saskatchewan, especially with the advent of horizontal well technology and new hydraulic fracturing methods. As more wells are drilled, there is ...The Bakken formation has become a prominent oil resource for south-east Saskatchewan, especially with the advent of horizontal well technology and new hydraulic fracturing methods. As more wells are drilled, there is a desire to determine whether there is potential for improved oil recovery and to evaluate the economic feasibility. This paper evaluates the benefit of implementing waterflooding, CO2 injection or WAG (water-alternating-gas) recovery methods for improved oil recovery of the Bakken formation. A simulation model resembling the study area was built using CMG-GEM (computer modeling group-generalized equation of state model) reservoir simulation package and a history match of the primary recovery data available was performed. Based on the simulation results, it was concluded that waterflooding had a significant influence on the oil recovery factor, although COz provided the highest increase in crude oil recovery, The capital expenditure for surface facilities and cost of injected fluid was the most economically viable for implementation of waterflooding. The WAG injection simulation results were similar to CO2 injection, except that reservoir pressure was able to be better maintained. Given that high-quality source water is available, waterflooding is the most economically feasible choice according to the simulation results obtained from this study.展开更多
The lean blowout experiments of the combustion stability device A (multi-vortexes-dome model combustor) have been carried out at atmospheric pressure. Compared with the device B (single-vortex-dome model combustor), t...The lean blowout experiments of the combustion stability device A (multi-vortexes-dome model combustor) have been carried out at atmospheric pressure. Compared with the device B (single-vortex-dome model combustor), the experimental results show that the device A has a superior lean blowout performance when the combustor reference velocity is within the range from 3.50m/s to 5.59m/s ( while the liner reference velocity is between 3.84 and 6.13m/s), and this superiority will remain stable after the inlet air flow rate reaches a certain value. In order to analyze the phenomena and experimental results, the numerical simulation method is used, and the strain rate and the cold reflux impact are employed to further explain the reason that causes the difference between the two devices' lean blowout characteristics.展开更多
文摘The Bakken formation has become a prominent oil resource for south-east Saskatchewan, especially with the advent of horizontal well technology and new hydraulic fracturing methods. As more wells are drilled, there is a desire to determine whether there is potential for improved oil recovery and to evaluate the economic feasibility. This paper evaluates the benefit of implementing waterflooding, CO2 injection or WAG (water-alternating-gas) recovery methods for improved oil recovery of the Bakken formation. A simulation model resembling the study area was built using CMG-GEM (computer modeling group-generalized equation of state model) reservoir simulation package and a history match of the primary recovery data available was performed. Based on the simulation results, it was concluded that waterflooding had a significant influence on the oil recovery factor, although COz provided the highest increase in crude oil recovery, The capital expenditure for surface facilities and cost of injected fluid was the most economically viable for implementation of waterflooding. The WAG injection simulation results were similar to CO2 injection, except that reservoir pressure was able to be better maintained. Given that high-quality source water is available, waterflooding is the most economically feasible choice according to the simulation results obtained from this study.
基金supported by the National Natural Science Foundation of China (No. 50876104)the Major State Basic Research Development Scheme of China (No. 2012CB720406)
文摘The lean blowout experiments of the combustion stability device A (multi-vortexes-dome model combustor) have been carried out at atmospheric pressure. Compared with the device B (single-vortex-dome model combustor), the experimental results show that the device A has a superior lean blowout performance when the combustor reference velocity is within the range from 3.50m/s to 5.59m/s ( while the liner reference velocity is between 3.84 and 6.13m/s), and this superiority will remain stable after the inlet air flow rate reaches a certain value. In order to analyze the phenomena and experimental results, the numerical simulation method is used, and the strain rate and the cold reflux impact are employed to further explain the reason that causes the difference between the two devices' lean blowout characteristics.