In this paper, multi-refinery using the same heavy crude oils as raw materials is studied, while a new nonlinear model for mixed heavy crude distillation is proposed. In practical crude distillation operation, the dis...In this paper, multi-refinery using the same heavy crude oils as raw materials is studied, while a new nonlinear model for mixed heavy crude distillation is proposed. In practical crude distillation operation, the distillate yield and product distribution of distillation units are different due to their various equipment and operating parameters, even the same ratio of raw materials is provided, so different process models for multi-refinery planning is therefore required. For process modeling, the relationships between total yields and mixing ratio of different refineries were determined, which is combined with process simulation using production data. Then,the yields and properties of crude distillation unit(CDU) fractions were calculated with the use of true boiling point(TBP) curves and property curves respectively when the initial cutting temperatures were given. Finally,in order to maximize the economic benefit of distillation, the optimal product distribution and the best mixing ratio of crude oil were calculated under the constraints of different properties of fractions. Comparing to previous models, the proposed model takes the influence of different refinery parameters on production process into account, while avoiding the complex process for determining the cutting points, which is considered more efficient and more accurate with respect to heavy crude refinery. Model was successfully verified by a case study,allowing a significant improvement of the refinery profit to be achieved.展开更多
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analys...Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.展开更多
文摘In this paper, multi-refinery using the same heavy crude oils as raw materials is studied, while a new nonlinear model for mixed heavy crude distillation is proposed. In practical crude distillation operation, the distillate yield and product distribution of distillation units are different due to their various equipment and operating parameters, even the same ratio of raw materials is provided, so different process models for multi-refinery planning is therefore required. For process modeling, the relationships between total yields and mixing ratio of different refineries were determined, which is combined with process simulation using production data. Then,the yields and properties of crude distillation unit(CDU) fractions were calculated with the use of true boiling point(TBP) curves and property curves respectively when the initial cutting temperatures were given. Finally,in order to maximize the economic benefit of distillation, the optimal product distribution and the best mixing ratio of crude oil were calculated under the constraints of different properties of fractions. Comparing to previous models, the proposed model takes the influence of different refinery parameters on production process into account, while avoiding the complex process for determining the cutting points, which is considered more efficient and more accurate with respect to heavy crude refinery. Model was successfully verified by a case study,allowing a significant improvement of the refinery profit to be achieved.
基金Supported by the National Natural Science Foundation of China(61590924,61673273,61521063)
文摘Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.