Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which ...Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50946052, 51076118 and 51006075)the New Century Excellent Talents (No. NCET-10-0605)+2 种基金the Shanghai Rising-Star Program (No. 11QH1402500)the Fundamental Research Funds for the Central Universitiesthe Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200802471052)
文摘Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.