期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于FBC的DPF低温再生控制技术开发
1
作者 季峰 吴峰胜 +3 位作者 陈勤学 沈玲 张正扬 张锡骏 《现代车用动力》 2023年第3期27-31,共5页
为应对柴油车颗粒捕集器(DPF)在复杂工况、维护成本、再生效果等方面的问题,开发了一种油基催化剂(FBC)的DPF再生技术。该技术构建了一套紧凑型的FBC智能喷射系统,采用自主集成开发模式,实现了油基催化剂自动加注的开发目标,通过发动机... 为应对柴油车颗粒捕集器(DPF)在复杂工况、维护成本、再生效果等方面的问题,开发了一种油基催化剂(FBC)的DPF再生技术。该技术构建了一套紧凑型的FBC智能喷射系统,采用自主集成开发模式,实现了油基催化剂自动加注的开发目标,通过发动机台架与整车功能试验对油基催化剂的性能与应用分别进行评估,实现了油基催化剂控制技术应用。自主完成了FBC控制系统的集成开发与测试验证,满足了系统控制要求;试验结果表明,油基催化剂的DPF可以在500~530℃内实现完全再生。 展开更多
关键词 油基催化剂 喷射系统 低温再生
下载PDF
Design of Multiple Metal Doped Ni Based Catalyst for Hydrogen Generation from Bio-oil Reforming at Mild-temperature 被引量:1
2
作者 袁丽霞 丁芳 +5 位作者 姚建铭 陈祥松 刘伟伟 吴金勇 巩飞艳 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期109-120,I0004,共13页
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor... A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature. 展开更多
关键词 Hydrogen generation BIO-OIL Ni based catalyst Mild-temperature
下载PDF
Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts 被引量:10
3
作者 Jia Wang Man Yang Aiqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1311-1319,共9页
The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1... The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction. 展开更多
关键词 GLYCEROL HYDROGENOLYSIS 1 3-propanediol Pt-W based catalysts
下载PDF
Research on New Silica Sol Matrix Used in Fluid Catalytic Cracking Reaction 被引量:3
4
作者 Zhang Zhongdong Liu Zhaoyong +3 位作者 Yan Zifeng Wang Yi Zhang Haitao Wang Zhifeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期29-33,共5页
A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol... A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol binder, which possessed abundant pore volume and suitable acid amount, was an ideal component for preparing cracking catalyst. As a result, the corresponding catalyst comprising the new binder showed excellent performance. Compared with the reference sample, the liquefied petroleum gas(LPG) and propylene yield obtained over this catalyst increased by 3.49 and 1.20 percentage points, respectively. The perfect pore structure and suitable Lewis acid amount of new silica sol were the possible reason leading to its outstanding performance. 展开更多
关键词 silica sol BINDER pH value LPG PROPYLENE CATALYST
下载PDF
Development of Light Cycle Oil(LCO) Hydrocracking Technology over a Commercial W-Ni Based Catalyst 被引量:9
5
作者 Peng Chong Yang Xuejing +4 位作者 Fang Xiangchen Huang Xinlu Cheng Zhenmin Zeng Ronghui Guo Rong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期30-36,共7页
Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel L... Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system. 展开更多
关键词 LCO hydrocracking high octane gasoline ULSD aromatics
下载PDF
Cracking of Palm Oil over H-AIMCM-41 Catalyst 被引量:1
6
作者 Suyanta Suyanta Falah Iip Izul 《Journal of Chemistry and Chemical Engineering》 2012年第6期531-535,共5页
The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of so... The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium aluminates, TMAOH (tetramethylammonium hydroxide), and CTMAB (cetyltrimethylammonium bromide), in Aquadest as a solvent. This process was carried out within 12 h of aging time at 100 ℃ in a teflon-lined stainless steel autoclave. The solid phase was filtered, then washed with distilled water, and dried in an oven at 80 ℃ for 24 h. The surfactant CTMAB was removed by calcination at 540 ℃ for 6 h using heating rate of 2 ℃/min. The as-synthesized and calcined powder was characterized by using FTIR (frontier transform infra red spectroscopy), XRD (X-ray diffraction), and TEM (transmission electron microscopy) methods. The product of AIMCM-41 was then converted into H-AIMCM-41 by ion exchanged in 0.5 M of NHaCI solution followed by filtration, drying at 80 ℃ for 24 h, and calcination at 540 ℃. The product of catalyst was used for catalytic conversion of PO (palm oil) to biogasoline in a fixed bed reactor at 200-400 ℃, under atmospheric pressure, and ratio of PO to catalyst was 200. The product of cracking was then distilled at 60 ℃ and analyzed using GC-MS (gas liquid chromatography - mass spectrometry) method. Result of the works shows that the catalyst had 4.49 nm of lattice parameter, and the cracking of PO gave 56.6% conversions with 29.4% selectivity to biogasoline like fraction. 展开更多
关键词 H-AIMCM-41 CRACKING palm oil gasoline.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部