期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
库车坳陷膏盐形成机理及其对油气生成的催化效应 被引量:1
1
作者 孙宁富 郭凤霞 《海洋石油》 CAS 2015年第1期58-62,共5页
库车坳陷膏盐形成是蒸发成因和深部卤水成因共同作用的结果。不仅膏盐的存在有助于有机质的富集和保存及后期的演化,而且膏盐形成过程对储集层及运移通道的发育也具有良好的改造作用。通过分析膏盐的化学组成及形成过程,明确了油气与膏... 库车坳陷膏盐形成是蒸发成因和深部卤水成因共同作用的结果。不仅膏盐的存在有助于有机质的富集和保存及后期的演化,而且膏盐形成过程对储集层及运移通道的发育也具有良好的改造作用。通过分析膏盐的化学组成及形成过程,明确了油气与膏盐的伴生关系,对于分析含盐地区油气催化与成藏具有重要意义。 展开更多
关键词 膏盐 形成机理 油气催化 库车坳陷
下载PDF
CN-31型气态烃、液态烃两用预转化催化剂研制及工厂应用
2
作者 李海涛 徐俊 +2 位作者 李玉富 赵丹 李启强 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2011年第6期25-30,共6页
介绍了CN-31型气态烃、液态烃两用预转化催化剂的实验室研制和工业应用。催化剂实验室筛选和工艺条件试验结果表明:在不改变现有轻油预转化工艺流程及设备的前提下,将轻油预转化变为天然气预转化工艺时,CN-31型油气两用预转化催化剂完... 介绍了CN-31型气态烃、液态烃两用预转化催化剂的实验室研制和工业应用。催化剂实验室筛选和工艺条件试验结果表明:在不改变现有轻油预转化工艺流程及设备的前提下,将轻油预转化变为天然气预转化工艺时,CN-31型油气两用预转化催化剂完全能满足工艺要求。该催化剂已在上海石洞口煤气制气有限公司得到应用。当以轻油为原料时,煤气负荷50万m3/d状态下,富气中CH4体积百分含量64.45%、C2+烃含量0.055g/m3,进出口气体温差57℃,反应器压差100kPa;当以天然气为原料时,各项性能和指标均能达到设计指标,在煤气45万m3/d负荷状态下,富气中CH4体积百分含量76.55%,进出口气体温差47℃,反应器压差105kPa。 展开更多
关键词 油气两用催化 预转化催化 实验研制 工厂应用 城市煤气
下载PDF
Propene and CO oxidation on Pt/Ce-Zr-SO_4^(2-) diesel oxidation catalysts:Effect of sulfate on activity and stability 被引量:9
3
作者 顾蕾 陈晓 +3 位作者 周瑛 朱秋莲 黄海凤 卢晗锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期607-616,共10页
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv... Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance. 展开更多
关键词 Diesel oxidation catalyst Pt/Ce-Zr-SO_4^(2-) catalyst Sulfur resistance Catalytic oxidation
下载PDF
Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst
4
作者 仇松柏 宫璐 +3 位作者 刘璐 洪成贵 袁丽霞 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期211-217,I0004,共8页
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp... We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods. 展开更多
关键词 BIO-OIL HYDROGEN Steam reforming Ni/HZSM-5 catalyst
下载PDF
Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming
5
作者 李兴龙 宁坤 +1 位作者 袁丽霞 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期477-483,I0004,共8页
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield... We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2. 展开更多
关键词 Hydrogen BIO-OIL Biomass char Ni-Al2O3 catalyst CuZn-AI203 catalyst Electro chemical catalytic reforming
下载PDF
Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach over CoZnAI Catalyst
6
作者 林少斌 叶同奇 +2 位作者 袁丽霞 侯滔 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期451-458,I0002,共9页
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products ... High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil. 展开更多
关键词 HYDROGEN BIO-OIL CoZnAl catalyst Electrochemical catalytic reforming
下载PDF
Effect of Metal Contamination on the Performance of Catalyst for Deep Catalytic Cracking Process 被引量:3
7
作者 Zhang Zhigang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第2期37-42,共6页
The effect of different metal contamination levels of catalysts for Deep Catalytic Cracking(DCC) on the distribution and selectivity of DCC products was investigated in a FCC pilot unit. The pilot test results showed ... The effect of different metal contamination levels of catalysts for Deep Catalytic Cracking(DCC) on the distribution and selectivity of DCC products was investigated in a FCC pilot unit. The pilot test results showed that the effects of the metal contamination level of catalyst on the propylene yield,the coke yield,the LPG yield,the gasoline yield,the selectivity of low carbon olefins,and coke selectivity was significant,and that the influence of metal contamination level on the conversion and dry gas yield was minor. 展开更多
关键词 low carbon olefins metal contamination catalytic cracking PETROCHEMICALS
下载PDF
Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha and CH4 over C12A7-Mg Catalyst 被引量:4
8
作者 Yue Pan Zhao-xiang Wang +2 位作者 Tao Kan Xi-feng Zhu Quan-xin Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期190-192,共3页
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ... Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process. 展开更多
关键词 C12A7-Mg BIO-OIL NAPHTHA CH4 Catalytic steam reforming HYDROGEN
下载PDF
Research on New Silica Sol Matrix Used in Fluid Catalytic Cracking Reaction 被引量:3
9
作者 Zhang Zhongdong Liu Zhaoyong +3 位作者 Yan Zifeng Wang Yi Zhang Haitao Wang Zhifeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期29-33,共5页
A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol... A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol binder, which possessed abundant pore volume and suitable acid amount, was an ideal component for preparing cracking catalyst. As a result, the corresponding catalyst comprising the new binder showed excellent performance. Compared with the reference sample, the liquefied petroleum gas(LPG) and propylene yield obtained over this catalyst increased by 3.49 and 1.20 percentage points, respectively. The perfect pore structure and suitable Lewis acid amount of new silica sol were the possible reason leading to its outstanding performance. 展开更多
关键词 silica sol BINDER pH value LPG PROPYLENE CATALYST
下载PDF
Study on Commercial Application of FP-DSN Sulfur Transfer Additive in FCC Unit 被引量:2
10
作者 Gao Siming Han Rongxian Chen Desheng(SINOPEC Qingdao Petrochemical Company,Qingdao 266043) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第2期15-19,共5页
The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators r... The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory. 展开更多
关键词 catalytic cracking unit sulfur transfer additive commercial application
下载PDF
Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene(model tar) 被引量:8
11
作者 Chun Shen Wuqing Zhou +1 位作者 Hao Yu Le Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期322-329,共8页
This paper investigated the influences of surface properties of carbon support and nickel precursors(nickel nitrate, nickel chloride and nickel acetate) on Ni nanoparticle sizes and catalytic performances for steam re... This paper investigated the influences of surface properties of carbon support and nickel precursors(nickel nitrate, nickel chloride and nickel acetate) on Ni nanoparticle sizes and catalytic performances for steam reforming of toluene. Treatment with nitric acid helped to increase the amount of functional groups on the surface and hydrophilic nature of carbon support, leading to a homogeneous distribution of Ni nanoparticles. The thermal decomposition products of nickel precursor also played an important role, Ni nanoparticles supported on carbon treated with acid using nickel nitrate as the precursor exhibited the smallest mean diameter of 4.5 nm. With the loading amount increased from 6 wt% to 18 wt%, the mean particle size of Ni nanoparticles varied from4.5 nm to 9.1 nm. The as-prepared catalyst showed a high catalytic activity and a good stability for toluene steam reforming: 98.1% conversion of toluene was obtained with the Ni content of 12 wt% and the S/C ratio of3, and the conversion only decreased to 92.0% after 700 min. Because of the high activity, good stability, and low cost, the as-prepared catalyst opens up new opportunities for tar removing. 展开更多
关键词 Ni nanoparticles Steam reforming Tar removing Catalytic performance
下载PDF
Cooling of a Diesel Reformate Fuelled Solid Oxide Fuel Cell by Internal Reforming of Methane: A Modelling Study 被引量:1
12
作者 黄肖微 Alexander Kromp 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期324-331,共8页
In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the coolin... In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air. 展开更多
关键词 diesel reformate METHANATION intemal reforming COOLING model solid oxide fuel cell-auxiliary power unit
下载PDF
Effect of Operating Parameters on Composition of Dry Gas Obtained During Gasoline Cracking Process
13
作者 Sha Youxin Long Jun +2 位作者 Xie Chaogang Li Zheng Wei Xiaoli (Research Institute of Petroleum Processing,SINOPEC,Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第3期1-5,共5页
The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The re... The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas. 展开更多
关键词 GASOLINE operating parameters catalytic cracking dry gas ETHYLENE
下载PDF
Effects of Current on Microcosmic Properties of Catalyst and Reforming of Bio-oil
14
作者 Li-xia Yuan Tong-qi Ye +1 位作者 Fei-yan Gong Quan-xin Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期34-40,共7页
Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC el... Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the Brunauer-Emmett-Teller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation. 展开更多
关键词 CURRENT BIO-OIL Electrochemical catalytic reforming CHARACTERIZATION
下载PDF
Investigation of Different Coke Samples Adhering to Cyclone Walls of a Commercial RFCC Reactor 被引量:2
15
作者 Li Xiaoman Song Jianfei +2 位作者 Sun Guogang Yan Chaoyu Wei Yaodong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期8-14,共7页
The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electro... The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electron microscope(SEM), and the possible coke formation processes were investigated as well. The results showed that some of the heavy nonvolatile oil droplets entrained in the flowing oil and gas mixture could possibly deposit or collide on the walls by gravity settling or turbulence diffusion, and then were gradually carbonized into solid coke by condensing and polymerization along with dehydrogenation. Meanwhile some of fine catalyst particles also built up and integrated into the solid coke. The coke can be classified into two types, namely, the hard coke and the soft coke, according to its property, composition and microstructure. The soft coke is formed in the oil and gas mixture's stagnant region where the oil droplets and catalyst particles are freely settled on the wall. The soft coke appears to be loose and contains lots of large catalyst particles. However, the hard coke is formed in the oil and gas mixture's flowing region where the oil droplets and catalyst particles diffuse towards the wall. This kind of coke is nonporous and very hard, which contains a few fine catalyst particles. Therefore, it is clear that the oil and gas mixture not only carries the oil droplets and catalyst particles, but also has the effects on their deposition on the wall, which can influence the composition and characteristics of deposited coke. 展开更多
关键词 FCC reactor cyclone coke formation microstructure characteristics
下载PDF
Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction
16
作者 M.A.Goula N.D.Charisiou +1 位作者 K.N.Papageridis G.Siakavelas 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1949-1965,共17页
The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were ... The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition. 展开更多
关键词 GLYCEROL HYDROGEN Steam reforming Supported nickel catalyst Catalyst prep aration
下载PDF
Gas-phase dehydration of glycerol over commercial Pt/γ-Al_2O_3 catalysts
17
作者 Sergey Danov Anton Esipovich +1 位作者 Artem Belousov Anton Rogozhin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第7期1138-1146,共9页
Gas-phase dehydration of glycerol to produce acmlein was investigated over commercial catalysts based on γ-Al2O3, viz. A-64, A-56,1-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl anions, HCl-impre... Gas-phase dehydration of glycerol to produce acmlein was investigated over commercial catalysts based on γ-Al2O3, viz. A-64, A-56,1-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl anions, HCl-impregnated sup- ports have been investigated in the dehydration reaction of glycerol at 375 ℃. For comparison, various H-zeolites were also examined. It was found that the glycerol conversion over the solid acid catalysts was strongly dependent on their acidity and surface area. And the relationship between the catalytic activity and the acidity of the catalysts was discussed. The outstanding properties of Pt/γ-Al2O3 catalyst systems for the dehydration of glycerol were revealed. Pt/γ-Al2O3 catalyst (AP-64) showed the highest catalytic activity after 50 h of reaction with an acrolein selectivity of 65% at a conversion of glycerol of 90%. Based on these results, catalysts based on γ-Al2O3 appear to be most promising for gas phase dehydration of glycerol. 展开更多
关键词 Glycerol Dehydration AcroleinZeolite Gamma alumina
下载PDF
Biodiesel Production by Enzymatic Catalysis Process Using Two Analytical Ways: Gas Chromatography and Total Glycerol Determination
18
作者 Ignacio Contreras Andrade Jonathan Parra Santiago +2 位作者 Jose Ricardo Sodre Joseph Sebastian Pathiyamattom Carlos Alberto Guerrero-Fajardo 《Journal of Chemistry and Chemical Engineering》 2014年第7期717-726,共10页
Currently, biodiesel is presented as one of the best alternatives for gradually replacing the use of fossil fuels, but it has some factors that make it economically impractical if it does not have a government support... Currently, biodiesel is presented as one of the best alternatives for gradually replacing the use of fossil fuels, but it has some factors that make it economically impractical if it does not have a government support. For this reason, research efforts focused on this area have been responsible for optimizing the process of biodiesel production by different catalytic routes to achieve greater efficiency at a lower cost. In this case, the biggest problem has been the high cost generated by an investigation, which in many occasions is the main factor to decide if an investigation could be carried out. Trying to reduce these costs, in the current study, we are using a technique of glycerol quantification by volumetric methods and comparing obtained results with the chromatographic method, which is conventionally used and comparatively much more expensive. Biodiesel employee was obtained by an enzymatic catalysis process varying one of three process variables:oil:alcohol molar ratio, temperature and proportion of catalyst. The numerical differences obtained between the two quantification methods generated relative errors lower than 10%, resulting in some occasions lower than 1%. By gas chromatography analysis the best yield was obtained at the same conditions of the volumetric method, a temperature of 45 ℃, an oil:alcohol ratio 1:4 and 8 wt.% of catalyst, but a yield of 95.5% and 97.1%, respectively. Due to the high precision of gas chromatography, this method is used to carry out a surface response analysis obtaining as ideal operating conditions a temperature of 43.5 ℃, 8.9 wt.%. of catalyst and an oil:alcohol ratio 1:4. 展开更多
关键词 Biodiesel production glycerol determination gas chromatography enzymatic catalysis.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部