The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temp...The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.展开更多
Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicat...Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study, and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type, which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin展开更多
A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mech...A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.展开更多
基金Supported by the National High Technology Research and Development of China(2012AA053101,2011AA050106)the National Key State Basic Research Development Program of China(2010CB227004)the National Natural Science Foundation of China(21376081)
文摘The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.
文摘Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study, and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type, which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin
基金supported by Advanced Research Center Program(No.2013073861) through the National Research Foundation of Korea
文摘A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.