This paper provides an overview of the economic analysis,policy debate,and methodological issues on soybean production, import and export, and impacts of GMO regulation on soybean foreign trade of China. The paper ana...This paper provides an overview of the economic analysis,policy debate,and methodological issues on soybean production, import and export, and impacts of GMO regulation on soybean foreign trade of China. The paper analyzes China’s soybean production capability and discovers that the present yield of China’s soybean plant system cannot satisfy the domestic demand.The paperalso provides the method to solve such matters by using the result of a modified Cobb-Douglas model. In the third section of this paper, the impacts of GMO regulation on soybean trade and marketin China are analyzed.In this section,we provide a methodological issue to analyze the impacts of such regulation on trade.The paper then explains the implicated result induced by such regulations.展开更多
A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program o...A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.展开更多
This paper investigates the effect of intake port configuration on the swirl that is generated within a direct injection(D.I.) diesel engine. The in-cylinder flow characteristics are known to have significant effects ...This paper investigates the effect of intake port configuration on the swirl that is generated within a direct injection(D.I.) diesel engine. The in-cylinder flow characteristics are known to have significant effects on fuel-air mixing, combustion, and emissions. To clarify how to intensify the swirl flow, a swirl control valve(SCV) and a bypass were selected as design parameters for enhancing the swirl flow. The optimal intake port shape was also chosen as a parameter needed to efficiently generate a high swirl ratio. The results revealed that a key factor in generating a high swirl ratio was to control the intake airflow direction passing through the intake valve seat. Further, the swirl intensity was influenced by changing the distance between the helical and tangential ports, and the swirl flow was changed by the presence of a bypass near the intake valve seat. Additionally, the effect of intake port geometry on the in-cylinder flow field was investigated by using a laser sheet visualization method. The experimental results showed a correlation of swirl ratio and mass flow rate. In addition, we found that employing the bypass was an effective method to increase swirl ratio without sacrificing mass flow rate.展开更多
This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracin...This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.展开更多
A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mech...A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.展开更多
文摘This paper provides an overview of the economic analysis,policy debate,and methodological issues on soybean production, import and export, and impacts of GMO regulation on soybean foreign trade of China. The paper analyzes China’s soybean production capability and discovers that the present yield of China’s soybean plant system cannot satisfy the domestic demand.The paperalso provides the method to solve such matters by using the result of a modified Cobb-Douglas model. In the third section of this paper, the impacts of GMO regulation on soybean trade and marketin China are analyzed.In this section,we provide a methodological issue to analyze the impacts of such regulation on trade.The paper then explains the implicated result induced by such regulations.
基金Supported by the National Natural Science Foundation of China(No.51005063,51375123)National Science and Technology Cooperation Projects of China(No.2012DFR70840)
文摘A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.
基金supported by the research fund of Hanyang University(HY-2012-P)
文摘This paper investigates the effect of intake port configuration on the swirl that is generated within a direct injection(D.I.) diesel engine. The in-cylinder flow characteristics are known to have significant effects on fuel-air mixing, combustion, and emissions. To clarify how to intensify the swirl flow, a swirl control valve(SCV) and a bypass were selected as design parameters for enhancing the swirl flow. The optimal intake port shape was also chosen as a parameter needed to efficiently generate a high swirl ratio. The results revealed that a key factor in generating a high swirl ratio was to control the intake airflow direction passing through the intake valve seat. Further, the swirl intensity was influenced by changing the distance between the helical and tangential ports, and the swirl flow was changed by the presence of a bypass near the intake valve seat. Additionally, the effect of intake port geometry on the in-cylinder flow field was investigated by using a laser sheet visualization method. The experimental results showed a correlation of swirl ratio and mass flow rate. In addition, we found that employing the bypass was an effective method to increase swirl ratio without sacrificing mass flow rate.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.
基金supported by Advanced Research Center Program(No.2013073861) through the National Research Foundation of Korea
文摘A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.