Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul...The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
This paper aims to conduct a study of the problems associated with the wear of the needles and fuel injection nozzles utilized in diesel engines. The wear found on the needles is mainly associated to impurities in the...This paper aims to conduct a study of the problems associated with the wear of the needles and fuel injection nozzles utilized in diesel engines. The wear found on the needles is mainly associated to impurities in the fuel oil and microcavitation occurred due to high pressure in the phase of the air compression for combustion of the combustible fluid. These pressures associated with the temperature and the fluid velocity results in the occurrence of vaporization, which releases shock waves that cause damage to the affected surface. The impurities solid particles from the fuel oil cause problems inside the nozzles as obstruction of the holes and wear on the needle tip and nozzle seat surface. These failures affect in the atomization of the fuel, since the deterioration of the internal passages of the nozzles interferes in the spray formation and in the end passage of the fluid. For the execution of this study it will be used digital microscopic analysis in specimens that suffered damage, in order to investigate the effects of fuel property, and the temperature conditions and pressure in the formation of the wear on the needles and injector nozzle.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
Large-eddy simulation of a sonic injection from circular and elliptic injectors into a supersonic crossflow has been performed.The effects of injector geometry on various fundamental mechanisms dictating the intricate...Large-eddy simulation of a sonic injection from circular and elliptic injectors into a supersonic crossflow has been performed.The effects of injector geometry on various fundamental mechanisms dictating the intricate flow phenomena including shock/jet interaction,jet shear layer vortices and their evolution,jet penetration properties and the relevant turbulence behaviors have been studied systematically.As a jet issuing transversely into a supersonic crossflow,salient three-dimensional shock and vortical structures,such as bow,separation and barrel shocks,Mach disk,horseshoe vortex,jet shear layer vortices and vortex pairs,are induced.The shock structures exhibit considerable deformations in the circular injection,while their fluctuation becomes smaller in the elliptic injection.The jet shear layer vortices are generated at the jet periphery and their evolution characteristics are analyzed through tracing the centroid of these coherent structures.It is found that the jet from the elliptic injector spreads rapidly in the spanwise direction but suffers a reduction in the transverse penetration compared to the circular injection case.The turbulent fluctuations are amplified because of the jet/crossflow interaction.The vertical Reynolds normal stress is enhanced in the downstream of the jet because of the upwash velocity induced by the counter-rotating vortex pair.展开更多
A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mech...A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
文摘The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘This paper aims to conduct a study of the problems associated with the wear of the needles and fuel injection nozzles utilized in diesel engines. The wear found on the needles is mainly associated to impurities in the fuel oil and microcavitation occurred due to high pressure in the phase of the air compression for combustion of the combustible fluid. These pressures associated with the temperature and the fluid velocity results in the occurrence of vaporization, which releases shock waves that cause damage to the affected surface. The impurities solid particles from the fuel oil cause problems inside the nozzles as obstruction of the holes and wear on the needle tip and nozzle seat surface. These failures affect in the atomization of the fuel, since the deterioration of the internal passages of the nozzles interferes in the spray formation and in the end passage of the fluid. For the execution of this study it will be used digital microscopic analysis in specimens that suffered damage, in order to investigate the effects of fuel property, and the temperature conditions and pressure in the formation of the wear on the needles and injector nozzle.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
基金supported by the National Natural Science Foundation of China(Grant Nos.11132010 and 11072236)
文摘Large-eddy simulation of a sonic injection from circular and elliptic injectors into a supersonic crossflow has been performed.The effects of injector geometry on various fundamental mechanisms dictating the intricate flow phenomena including shock/jet interaction,jet shear layer vortices and their evolution,jet penetration properties and the relevant turbulence behaviors have been studied systematically.As a jet issuing transversely into a supersonic crossflow,salient three-dimensional shock and vortical structures,such as bow,separation and barrel shocks,Mach disk,horseshoe vortex,jet shear layer vortices and vortex pairs,are induced.The shock structures exhibit considerable deformations in the circular injection,while their fluctuation becomes smaller in the elliptic injection.The jet shear layer vortices are generated at the jet periphery and their evolution characteristics are analyzed through tracing the centroid of these coherent structures.It is found that the jet from the elliptic injector spreads rapidly in the spanwise direction but suffers a reduction in the transverse penetration compared to the circular injection case.The turbulent fluctuations are amplified because of the jet/crossflow interaction.The vertical Reynolds normal stress is enhanced in the downstream of the jet because of the upwash velocity induced by the counter-rotating vortex pair.
基金supported by Advanced Research Center Program(No.2013073861) through the National Research Foundation of Korea
文摘A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out nu- merically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Math number of 2.08 has been probed. The investigation has been carried out in a two dimension- al numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test sec- tion shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.