期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
油液光谱数据诊断综合传动装置异常磨损定位方法
1
作者
徐峰
张倩倩
+3 位作者
季文龙
贾然
张鹏
郑长松
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024年第5期1398-1404,共7页
磨损是影响综合传动装置工作可靠性及使用寿命的重要因素之一,当前相关研究中常用的聚类、主成分分析、加权融合等油液光谱数据分析方法,缺乏对特定元素浓度指标异常磨损情况下随时间增长的考虑。为分析综合传动装置不同零部件的磨损状...
磨损是影响综合传动装置工作可靠性及使用寿命的重要因素之一,当前相关研究中常用的聚类、主成分分析、加权融合等油液光谱数据分析方法,缺乏对特定元素浓度指标异常磨损情况下随时间增长的考虑。为分析综合传动装置不同零部件的磨损状态,提出一种基于油液光谱数据的零部件异常磨损定位分析方法。针对综合传动装置异常磨损过程中部分元素在特定阶段会出现快速增长的情况,提出基于时间窗相关距离的聚类方法,分离表征不同零部件磨损状态的元素;提出磨损元素的磨损趋势分级方法,以高磨损趋势元素为聚类中心,使聚类结果具备可解释性;通过分级系数确定零部件磨损元素权重,融合各零部件磨损元素,获取不同零部件磨损状态表征;通过异常磨损界限值识别异常磨损,实现零部件异常磨损定位。以综合传动装置润滑油液光谱数据为例,检测判断该装置异常磨损的零部件及时间段。检测结果表明:Fe、Cu、Pb三种元素的磨损趋势分级系数最高,携带大量磨损信息,能够有效表征装置的磨损状态;基于时间窗相关距离的有中心聚类方法,成功将油液光谱数据分为Fe、Cu、Pb三类,可用于有效表征整体、摩擦片、齿轮组的磨损状态;基于分级系数的加权融合方法可以有效对该装置的异常磨损部位和时间周期进行检测和判断,为后续的故障预防和维护提供技术指导。
展开更多
关键词
机械磨损
油液光谱数据
磨损趋势分级
异常磨损定位
下载PDF
职称材料
基于油液光谱LSSVR-AR模型的发动机故障预测
被引量:
4
2
作者
徐超
张培林
+2 位作者
任国全
李兵
吴定海
《内燃机学报》
EI
CAS
CSCD
北大核心
2010年第2期160-164,共5页
针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二...
针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二乘支持向量回归,得到非平稳时间序列的趋势项及剔除趋势项后的随机项;然后对随机项建立AR模型并与趋势项的LSSVR模型组合,得到非平稳时间序列模型;最后用所建模型对油液光谱数据及发动机故障进行预测。用所提建模方法对Fe、Cu、Pb、Si光谱数据预测的平均绝对百分比误差分别为1.987%、2.889%、2.343%、6.860%,明显低于其他模型。实例证明,所提模型能对发动机故障进行准确预测。
展开更多
关键词
最小二乘支持向量回归
AR模型
非平稳时间序列建模
油液光谱数据
预测
故障预测
下载PDF
职称材料
题名
油液光谱数据诊断综合传动装置异常磨损定位方法
1
作者
徐峰
张倩倩
季文龙
贾然
张鹏
郑长松
机构
中国人民解放军
中国人民解放军
北京信息科技大学现代测控技术教育部重点实验室
北京理工大学机械与车辆学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024年第5期1398-1404,共7页
基金
装备预研重点实验室基金项目(141009AT03091H)资助。
文摘
磨损是影响综合传动装置工作可靠性及使用寿命的重要因素之一,当前相关研究中常用的聚类、主成分分析、加权融合等油液光谱数据分析方法,缺乏对特定元素浓度指标异常磨损情况下随时间增长的考虑。为分析综合传动装置不同零部件的磨损状态,提出一种基于油液光谱数据的零部件异常磨损定位分析方法。针对综合传动装置异常磨损过程中部分元素在特定阶段会出现快速增长的情况,提出基于时间窗相关距离的聚类方法,分离表征不同零部件磨损状态的元素;提出磨损元素的磨损趋势分级方法,以高磨损趋势元素为聚类中心,使聚类结果具备可解释性;通过分级系数确定零部件磨损元素权重,融合各零部件磨损元素,获取不同零部件磨损状态表征;通过异常磨损界限值识别异常磨损,实现零部件异常磨损定位。以综合传动装置润滑油液光谱数据为例,检测判断该装置异常磨损的零部件及时间段。检测结果表明:Fe、Cu、Pb三种元素的磨损趋势分级系数最高,携带大量磨损信息,能够有效表征装置的磨损状态;基于时间窗相关距离的有中心聚类方法,成功将油液光谱数据分为Fe、Cu、Pb三类,可用于有效表征整体、摩擦片、齿轮组的磨损状态;基于分级系数的加权融合方法可以有效对该装置的异常磨损部位和时间周期进行检测和判断,为后续的故障预防和维护提供技术指导。
关键词
机械磨损
油液光谱数据
磨损趋势分级
异常磨损定位
Keywords
Mechanical wear
Oil spectral data
Wear trend classification
Abnormal wear location
分类号
TH212 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
基于油液光谱LSSVR-AR模型的发动机故障预测
被引量:
4
2
作者
徐超
张培林
任国全
李兵
吴定海
机构
军械工程学院一系
出处
《内燃机学报》
EI
CAS
CSCD
北大核心
2010年第2期160-164,共5页
基金
国家自然科学基金资助项目(50705097)
清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF09B06)
军械工程学院基金资助项目(YJJXM08009)
文摘
针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二乘支持向量回归,得到非平稳时间序列的趋势项及剔除趋势项后的随机项;然后对随机项建立AR模型并与趋势项的LSSVR模型组合,得到非平稳时间序列模型;最后用所建模型对油液光谱数据及发动机故障进行预测。用所提建模方法对Fe、Cu、Pb、Si光谱数据预测的平均绝对百分比误差分别为1.987%、2.889%、2.343%、6.860%,明显低于其他模型。实例证明,所提模型能对发动机故障进行准确预测。
关键词
最小二乘支持向量回归
AR模型
非平稳时间序列建模
油液光谱数据
预测
故障预测
Keywords
Least square support vector regression
Auto-regression model
Non-stationary time series modeling
Oil spectrum data prediction
Fault prediction
分类号
TK401 [动力工程及工程热物理—动力机械及工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
油液光谱数据诊断综合传动装置异常磨损定位方法
徐峰
张倩倩
季文龙
贾然
张鹏
郑长松
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于油液光谱LSSVR-AR模型的发动机故障预测
徐超
张培林
任国全
李兵
吴定海
《内燃机学报》
EI
CAS
CSCD
北大核心
2010
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部