Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several pa...Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.展开更多
Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
One way for reducing tar is oxidative and thermal cracking by partial combustion of the biomass producer gas in the gas reformer. Cracking and polymerization of the tar occur simultaneously at the proximity of inverse...One way for reducing tar is oxidative and thermal cracking by partial combustion of the biomass producer gas in the gas reformer. Cracking and polymerization of the tar occur simultaneously at the proximity of inverse diffusion flame. Experimental study has been performed to clarify the effect of hydrogen concentration on soot formation and the growth of polycyclic aromatic hydrocarbons. In the present study, hydrogen concentration is controlled by the small amount of hydrogen addition to the oxidizer. The main results are as follows. Soot formation is suppressed by the small amount of hydrogen addition. The suppression of soot formation is caused by higher concentration of hydrogen. Carbon yield increases by hydrogen addition since carbon content in the undetectable components by the integrated gas chromatograph decreases. In addition, the increase in carbon yield is caused mainly by the increase in carbon monoxide stemmed from reforming of high-boiling components.展开更多
The effects of three factors on combustion performance of petroleum coke, Herin Coal and Shenmu Coal have been studied, including the ratio of primary air, excess air factor, and the swirling intensity of outer second...The effects of three factors on combustion performance of petroleum coke, Herin Coal and Shenmu Coal have been studied, including the ratio of primary air, excess air factor, and the swirling intensity of outer secondary air. The experiments were carried out on a one-dimensional furnace with dual channel swirling burner, in which temperature of center furnace, emission of air pollutants, and burn-out rate of fuel were measured. The results provide the optimal ratio of primary air, excess air factor and swirling intensity of outer secondary air for the fuels. The combustion performance of petroleum coke B is much better than petroleum coke A, but worse than Hejin coal and Shenmu coal. In addition, the burn-out rate of petroleum coke depends much more on the temperature in terminal stage of combustion than in the early stage of combustion.展开更多
An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two ...An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves: one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm^3. The tar yield in this work is 1.5%, much lower than that of pyrolysis. Carbon conversion efficiency to fuel gas and flue gas is about 90%.展开更多
文摘Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
文摘One way for reducing tar is oxidative and thermal cracking by partial combustion of the biomass producer gas in the gas reformer. Cracking and polymerization of the tar occur simultaneously at the proximity of inverse diffusion flame. Experimental study has been performed to clarify the effect of hydrogen concentration on soot formation and the growth of polycyclic aromatic hydrocarbons. In the present study, hydrogen concentration is controlled by the small amount of hydrogen addition to the oxidizer. The main results are as follows. Soot formation is suppressed by the small amount of hydrogen addition. The suppression of soot formation is caused by higher concentration of hydrogen. Carbon yield increases by hydrogen addition since carbon content in the undetectable components by the integrated gas chromatograph decreases. In addition, the increase in carbon yield is caused mainly by the increase in carbon monoxide stemmed from reforming of high-boiling components.
基金Acknowledgments This work is supported by Natural Science Foundation of China (NO. 51076127) and the Clean Combustion & Gas-solid Two-Phase Flow group in Xi'an Jiaotong University.
文摘The effects of three factors on combustion performance of petroleum coke, Herin Coal and Shenmu Coal have been studied, including the ratio of primary air, excess air factor, and the swirling intensity of outer secondary air. The experiments were carried out on a one-dimensional furnace with dual channel swirling burner, in which temperature of center furnace, emission of air pollutants, and burn-out rate of fuel were measured. The results provide the optimal ratio of primary air, excess air factor and swirling intensity of outer secondary air for the fuels. The combustion performance of petroleum coke B is much better than petroleum coke A, but worse than Hejin coal and Shenmu coal. In addition, the burn-out rate of petroleum coke depends much more on the temperature in terminal stage of combustion than in the early stage of combustion.
文摘An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves: one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm^3. The tar yield in this work is 1.5%, much lower than that of pyrolysis. Carbon conversion efficiency to fuel gas and flue gas is about 90%.