This paper focuses on potential development models of future oil and gas exploration in South China Sea. A detailed study of current development models worldwide is performed through some examples of industry installe...This paper focuses on potential development models of future oil and gas exploration in South China Sea. A detailed study of current development models worldwide is performed through some examples of industry installed/ongoing projects and major technical issues encountered during these practice. Key technologies are discussed for the success of field development. Some of the technologies and field development experience can be used for South China Sea project. Several models are studied in field development for different scenarios,including marginal field,large oil field and gas field. With the massive investment activities,continued improved technologies,and rapidly growing pool of professionals,the offshore industry in China will soon encounter a golden period.展开更多
The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends...The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.展开更多
Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates mate...Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates material balance principle and the concept of material balance pseudo-time proposed by Blansingame. With daily production data of gas well, it could be used to calculate OGIP, current formation pressure, permeability, skin factor, to identify complex geologic boundaries, to determine whether drainage boundary has been reached, to calculate drainage area and drainage radius for single well and to predict performance. It has been extensively employed in more than ten low-permeability gas fields. It proves that most problems in performance analysis for low permeability gas reservoirs could be solved by this method. Field practices show great economical benefits could be achieved by employing this method in gas field development.展开更多
文摘This paper focuses on potential development models of future oil and gas exploration in South China Sea. A detailed study of current development models worldwide is performed through some examples of industry installed/ongoing projects and major technical issues encountered during these practice. Key technologies are discussed for the success of field development. Some of the technologies and field development experience can be used for South China Sea project. Several models are studied in field development for different scenarios,including marginal field,large oil field and gas field. With the massive investment activities,continued improved technologies,and rapidly growing pool of professionals,the offshore industry in China will soon encounter a golden period.
文摘The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.
文摘Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates material balance principle and the concept of material balance pseudo-time proposed by Blansingame. With daily production data of gas well, it could be used to calculate OGIP, current formation pressure, permeability, skin factor, to identify complex geologic boundaries, to determine whether drainage boundary has been reached, to calculate drainage area and drainage radius for single well and to predict performance. It has been extensively employed in more than ten low-permeability gas fields. It proves that most problems in performance analysis for low permeability gas reservoirs could be solved by this method. Field practices show great economical benefits could be achieved by employing this method in gas field development.