BraLTP2 is an important member of lipid transfer protein family, and its molecular biology function in Brassica napus (B. napus) had been explored by prerious study. How-ever, affection of BraLTP2 on secondary metab...BraLTP2 is an important member of lipid transfer protein family, and its molecular biology function in Brassica napus (B. napus) had been explored by prerious study. How-ever, affection of BraLTP2 on secondary metabolites is still not clear. In this study, we inves-tigated difference of leaf secondary metabolite profling between BraLTP2 overexpressing B. napus and wild type. Liquid chromatography tandem mass spectrometry (LC-MS) was utilized. Wide range of secondary metabolites was found in BraLTP2 overexpressing plants. A total of 100 secondary metabolites were determined, 42 of which had signifcant differ-ences, including favonoids, phenylpropanoids and phenolamides. These results were in accordance with signifcant increasing trichomes of overexpressing BraLTP2 plants, which might produce and store secondary metabolites. Partial least squares discriminant anal-ysis (PLS-DA) was performed to identify difference of secondary metabolites. PLS-DA score plots showed high reproducibility of each treatment. Signifcant changes were found between transformed and wild type. Permutation test validates the reliability rigorously. Fur-thermore, overexpressing of BraLTP2 led to seed germination improvement during the frst 48 h under oxidation stress. Increased oxidation resistance of transgenic B. napus was in accordance with the signifcant variations of phenylpropanoids, phenylpropanoids and phe-nolamides.This work was supported by Central Public-interest Scientifc Institution Basal Research Fund, Major Research Project of CAAS Science and National Genetically Modifed Organisms Breeding Major Projects China (2018ZX0801023B).展开更多
基金supported by Central Public-interest Scientific Institution Basal Research FundMajor Research Project of CAAS Science and National Genetically Modified Organisms Breeding Major Projects China(2018ZX0801023B)
文摘BraLTP2 is an important member of lipid transfer protein family, and its molecular biology function in Brassica napus (B. napus) had been explored by prerious study. How-ever, affection of BraLTP2 on secondary metabolites is still not clear. In this study, we inves-tigated difference of leaf secondary metabolite profling between BraLTP2 overexpressing B. napus and wild type. Liquid chromatography tandem mass spectrometry (LC-MS) was utilized. Wide range of secondary metabolites was found in BraLTP2 overexpressing plants. A total of 100 secondary metabolites were determined, 42 of which had signifcant differ-ences, including favonoids, phenylpropanoids and phenolamides. These results were in accordance with signifcant increasing trichomes of overexpressing BraLTP2 plants, which might produce and store secondary metabolites. Partial least squares discriminant anal-ysis (PLS-DA) was performed to identify difference of secondary metabolites. PLS-DA score plots showed high reproducibility of each treatment. Signifcant changes were found between transformed and wild type. Permutation test validates the reliability rigorously. Fur-thermore, overexpressing of BraLTP2 led to seed germination improvement during the frst 48 h under oxidation stress. Increased oxidation resistance of transgenic B. napus was in accordance with the signifcant variations of phenylpropanoids, phenylpropanoids and phe-nolamides.This work was supported by Central Public-interest Scientifc Institution Basal Research Fund, Major Research Project of CAAS Science and National Genetically Modifed Organisms Breeding Major Projects China (2018ZX0801023B).