Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for bi...Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
The effect of microwave (MW) heating on the dielectric properties and oxidation processes of virgin olive oil and refined sunflower oil were determined by dielectric and UV- spectroscopy. Samples were heated in the ...The effect of microwave (MW) heating on the dielectric properties and oxidation processes of virgin olive oil and refined sunflower oil were determined by dielectric and UV- spectroscopy. Samples were heated in the microwave oven (850 W, 2.450 MHz) for 0 to 14 minutes. The results show degradation of dielectric characteristics, conductivity and oxidative stability of investigated oils, increasing with the exposure time. UV spectrum shows only one defined peak at 206 nm for olive oil confirming the dominant presence of monounsaturated fats and four peaks for sunflower oil (203 nm, 230 nm, 269 nm and 278 nm) dependent on polyunsaturated acid fats contents. Increasing of absorbance at all peak wave lengths indicates production of lipid oxidation, due to formation of conjugated monoenes and dienes and in small amounts due to trienes and secondary products like ketoaldehydes. Dielectric constant for olive oil is stable and almost unchangeable with MW radiation while sunflower oil's c' oscillates around the origin value in greater rate. Dielectric loss e" decreases with increasing time of MW radiation and its maximum shifts towards higher frequencies for sunflower oil indicating shortening of the relaxation times, while for olive oil it is unchanged. Cole-Cole analysis show the presence of only one relaxation process in the oils. Conductivity of oils is increasing in similar way with increasing frequency following the Jonscher's power law and is not changed with MW exposure time. Olive oil has conductivity higher for four orders of magnitude than sunflower oil, which is connected to the high content of monounsaturated fats. The differences between sunflower and olive oil characteristics are discussed.展开更多
文摘Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.
文摘The effect of microwave (MW) heating on the dielectric properties and oxidation processes of virgin olive oil and refined sunflower oil were determined by dielectric and UV- spectroscopy. Samples were heated in the microwave oven (850 W, 2.450 MHz) for 0 to 14 minutes. The results show degradation of dielectric characteristics, conductivity and oxidative stability of investigated oils, increasing with the exposure time. UV spectrum shows only one defined peak at 206 nm for olive oil confirming the dominant presence of monounsaturated fats and four peaks for sunflower oil (203 nm, 230 nm, 269 nm and 278 nm) dependent on polyunsaturated acid fats contents. Increasing of absorbance at all peak wave lengths indicates production of lipid oxidation, due to formation of conjugated monoenes and dienes and in small amounts due to trienes and secondary products like ketoaldehydes. Dielectric constant for olive oil is stable and almost unchangeable with MW radiation while sunflower oil's c' oscillates around the origin value in greater rate. Dielectric loss e" decreases with increasing time of MW radiation and its maximum shifts towards higher frequencies for sunflower oil indicating shortening of the relaxation times, while for olive oil it is unchanged. Cole-Cole analysis show the presence of only one relaxation process in the oils. Conductivity of oils is increasing in similar way with increasing frequency following the Jonscher's power law and is not changed with MW exposure time. Olive oil has conductivity higher for four orders of magnitude than sunflower oil, which is connected to the high content of monounsaturated fats. The differences between sunflower and olive oil characteristics are discussed.