The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic t...The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.展开更多
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.