Pol CMS是指波里马细胞质雄性不育,是油菜杂种优势利用的主要途径。从基地选择、播种期确定、播种方法、水肥管理、病虫草害防治、花期调节、除杂去劣、辅助授粉,收获贮存等方面,总结了Pol CMS油菜品种在青海、甘肃等春油菜产区实施杂...Pol CMS是指波里马细胞质雄性不育,是油菜杂种优势利用的主要途径。从基地选择、播种期确定、播种方法、水肥管理、病虫草害防治、花期调节、除杂去劣、辅助授粉,收获贮存等方面,总结了Pol CMS油菜品种在青海、甘肃等春油菜产区实施杂交制种的技术要点,为波里马细胞质雄性不育杂种优势利用系统杂交油菜种子高质高产生产提供了技术参考。展开更多
Rapeseed is one of the major oil crops in China and it is very sensitive to climate change.The Yangtze River Basin is the main rapeseed production area in China.Therefore,a better understanding of the impact of climat...Rapeseed is one of the major oil crops in China and it is very sensitive to climate change.The Yangtze River Basin is the main rapeseed production area in China.Therefore,a better understanding of the impact of climate change on rapeseed production in the basin is of both scientific and practical importance to Chinese oil industry and food security.In this study,based on climate data from 5 General Circulation Models(GCMs) with 4 representative concentration pathways(RCPs) in 2011–2040(2020 s),2041–2070(2050 s) and 2071–2100(2080 s),we assessed the changes in rapeseed production potential between the baseline climatology of 1981–2010 and the future climatology of the 2020 s,2050 s,and 2080 s,respectively.The key modelling tool – the AEZ model – was updated and validated based on the observation records of 10 representative sites in the basin.Our simulations revealed that:(1) the uncertainty of the impact of climate change on rapeseed production increases with time;(2) in the middle of this century(2050 s),total rapeseed production would increase significantly;(3) the average production potential increase in the 2050 s for the upper,middle and lower reaches of the Yangtze River Basin is 0.939,1.639 and 0.339 million tons respectively;(4) areas showing most significant increases in production include southern Shaanxi,central and eastern Hubei,northern Hunan,central Anhui and eastern Jiangsu.展开更多
基金National Natural Science Foundation of China,No.41671113,No.51761135024,No.41601049,No.41475040China’s National Science&Technology Pillar Program,No.2016YFC0502702
文摘Rapeseed is one of the major oil crops in China and it is very sensitive to climate change.The Yangtze River Basin is the main rapeseed production area in China.Therefore,a better understanding of the impact of climate change on rapeseed production in the basin is of both scientific and practical importance to Chinese oil industry and food security.In this study,based on climate data from 5 General Circulation Models(GCMs) with 4 representative concentration pathways(RCPs) in 2011–2040(2020 s),2041–2070(2050 s) and 2071–2100(2080 s),we assessed the changes in rapeseed production potential between the baseline climatology of 1981–2010 and the future climatology of the 2020 s,2050 s,and 2080 s,respectively.The key modelling tool – the AEZ model – was updated and validated based on the observation records of 10 representative sites in the basin.Our simulations revealed that:(1) the uncertainty of the impact of climate change on rapeseed production increases with time;(2) in the middle of this century(2050 s),total rapeseed production would increase significantly;(3) the average production potential increase in the 2050 s for the upper,middle and lower reaches of the Yangtze River Basin is 0.939,1.639 and 0.339 million tons respectively;(4) areas showing most significant increases in production include southern Shaanxi,central and eastern Hubei,northern Hunan,central Anhui and eastern Jiangsu.