[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were e...[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.展开更多
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA10A10403)National Key Technology Research and Development Program(2010BAD01B06)+1 种基金Jiangsu Province Science and Technology Support Program(BE2012327)Jiangsu Agricultural Science and Technology Innovation Fund(CX(14)2003)~~
文摘[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.