期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于低空遥感的消费级相机油菜苗期长势监测最优波段选取 被引量:3
1
作者 王楚锋 王天一 +3 位作者 廖世鹏 张东彦 谢静 张建 《华中师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期565-573,共9页
无人机遥感作为卫星和航空遥感平台的有力补充,在低空遥感观测领域发挥越来越重要的作用.对于农作物长势监测而言,选择合适的光谱波段有利于更加准确地反映作物长势情况.该研究借助水稻—油菜氮素养分试验,针对其油菜季开展基于无人机... 无人机遥感作为卫星和航空遥感平台的有力补充,在低空遥感观测领域发挥越来越重要的作用.对于农作物长势监测而言,选择合适的光谱波段有利于更加准确地反映作物长势情况.该研究借助水稻—油菜氮素养分试验,针对其油菜季开展基于无人机遥感的消费级相机油菜苗期长势监测最优波段选取问题研究.试验采用经红外改造后的消费级相机,逐次搭配lp680、lp720、lp850 3种近红外长通滤波片和RGB红外截止滤波片来获取不同光谱位置的近红外波段影像和可见光波段影像.在此基础上计算多波段影像的多种植被指数,同时结合油菜地面冠层高光谱数据和滤波片光谱响应特性模拟计算相同的植被指数.结果表明,使用可见光波段影像计算的归一化差指数(NDI)与地面实测归一化差植被指数(NDVI)之间的相关性最高,其R2达到0.945,该结果与基于油菜地面冠层高光谱数据所得结果呈现出较好的一致性.同时该NDI值与油菜氮素养分试验中不同氮素施用水平之间的相关性也较好,其R2达0.963.该研究结果表明选取常规消费级相机可见光波段也能准确地获取作物长势信息,为其用于作物长势监测提供了科学依据. 展开更多
关键词 最佳波段 无人机 油菜氮素营养 植被指数
下载PDF
Multifractal methods for rapeseed nitrogen nutrition qualitative diagnosis modeling
2
作者 Jian-Hui Li Fang Wang +2 位作者 Jin-Wei Li Rui-Biao Zou Gui-Ping Liao 《International Journal of Biomathematics》 2016年第4期285-297,共13页
Nutrition diagnosis plays a key role in the crop's growth, which has mainly been car- ried out in the field by agricultural workers. Currently, automatic nutrition recognition technologies have been widely used in th... Nutrition diagnosis plays a key role in the crop's growth, which has mainly been car- ried out in the field by agricultural workers. Currently, automatic nutrition recognition technologies have been widely used in this field. A procedure is proposed in this paper to diagnose nitrogen nutrition non-destructively for rapeseed qualitatively based on the multifractal theory. Twelve texture parameters are given by the method of multifractal detrended fluctuation (MF-DFA), which contains six generalized Hurst exponents and six relative multifractal parameters that are used as features of the rapeseed leaf images for identifying the two nitrogen levels, namely, the N-mezzo and the N-wane. For the base leaves, central leaves and top leaves of the rapeseed plant and the three-section mixed samples, three parameters combinations are selected to conduct the work. Five classifiers of Fisher's linear discriminant algorithm (LDA), extreme learning machine (ELM), support vector machine and kernel method (SVMKM), random decision forests (RF) and K-nearest neighbor algorithm (KNN) are employed to calculate the diagno- sis accuracy. An interesting finding is that the best diagnose accuracy is from the base leaves of the rapeseed plant. It is explained that the base leaf is the most sensitive to the nitrogen deficiency. The diagnose effect by the base leaves samples is outshining the existing result significantly for the same leaves samples. For the mixed samples, the aver- aged discriminant accuracy reaches 97.12% and 97.56% by SVMKM and RF methods with the 10-fold cross-validation respectively. The resulting high accuracy on N-levels identification shows the feasibility and efficiency of our method. 展开更多
关键词 Rapeseed leaf image nitrogen diagnosis multifractal detrended fluctuationanalysis classifiers.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部