In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated b...In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated by faults. Characteristics of the block include a dense well network, thin reservoirs, complicated horizontal relationships, and small velocity difference between reservoir and non-reservoir. Therefore, it is difficult to conduct detailed reservoir description for subsequent development project adjustment. We demonstrate a stochastic seismic inversion which aims at detailed reservoir description. It is a technology which utilizes multiple wells, seismic data, and geological calibration and integrates with 3D structural interpretation results to build a 3D multi-fault detailed and constrained geological model. On this basis, we adopted stochastic seismic inversion to conduct a multi-stratum parameters inversion such as impedance and lithology. As a result, thin interbedded strata in the block were well resolved and the results demonstrated the importance of detailed reservoir inversion for oilfield development.展开更多
Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resol...Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.展开更多
Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematica...Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.展开更多
文摘In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated by faults. Characteristics of the block include a dense well network, thin reservoirs, complicated horizontal relationships, and small velocity difference between reservoir and non-reservoir. Therefore, it is difficult to conduct detailed reservoir description for subsequent development project adjustment. We demonstrate a stochastic seismic inversion which aims at detailed reservoir description. It is a technology which utilizes multiple wells, seismic data, and geological calibration and integrates with 3D structural interpretation results to build a 3D multi-fault detailed and constrained geological model. On this basis, we adopted stochastic seismic inversion to conduct a multi-stratum parameters inversion such as impedance and lithology. As a result, thin interbedded strata in the block were well resolved and the results demonstrated the importance of detailed reservoir inversion for oilfield development.
基金sponsored by the 973 Program(Grant No.2006CB202306)Open Fund of the State Key Laboratory of Petroleum Resource and Prospecting(Grant No.PRPDX2008-07)
文摘Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.
文摘Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.