期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
治痫方治疗癫痫病89例临床观察 被引量:1
1
作者 曾学 《四川中医》 2013年第12期99-100,共2页
目的:观察自拟治痫方治疗癫痫病的临床疗效。方法:89例均经自拟治痫方一和方二交替服用治疗,2个月为1疗程。治疗3~4个疗程。结果:显效59例,有效24例,无效6例,总有效率93.2%。结论:自拟治痫方可以提高癫痫的控制率及缓解率,... 目的:观察自拟治痫方治疗癫痫病的临床疗效。方法:89例均经自拟治痫方一和方二交替服用治疗,2个月为1疗程。治疗3~4个疗程。结果:显效59例,有效24例,无效6例,总有效率93.2%。结论:自拟治痫方可以提高癫痫的控制率及缓解率,降低复发率。 展开更多
关键词 自拟 治痫方
下载PDF
治痫方疗效观察 被引量:1
2
作者 冀汝文 《山西中医》 2009年第6期21-21,共1页
关键词 治痫方 中医药疗法
下载PDF
Classification of epilepsy using computational intelligence techniques 被引量:3
3
作者 Khurram I. Qazi H.K. Lam +2 位作者 Bo Xiao Gaoxiang Ouyang Xunhe Yin 《CAAI Transactions on Intelligence Technology》 2016年第2期137-149,共13页
This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural... This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise. 展开更多
关键词 Absence seizure Discrete wavelet transform Epilepsy classification Feature extraction k-means clustering k-nearest neighbours Naive Bayes NEURALNETWORKS Support vector machines
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部