Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has b...Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has been investigated in China since the 1990s. Advances in mechanism of CO2 enhanced CBM recovery (CO2-ECBM) in China are reviewed in light of certain aspects, such as the competitive multi-component gas adsorption, sorption-induced coal swelling/shrinkage and its potential effect on CBM production and numerical simulation for CO2-ECBM recovery. Newer investigations for improving the technology are discussed. It is suggested that a comprehensive feasibility demonstration in terms of geology, technology, economics and environment-carrying capacity is necessary for a successful application of the technology for CBM recovery in China. The demonstration should be car-ried out after more investigations into such facets as the control of coal components and structure to a competitive multi-component-gas adsorption, the behavior and essence of super-critical adsorption by coal of gas, environmental and safe feasi-bility of coal mining after CO2 injection and more extensive pilot tests for CO2-ECBM recovery.展开更多
In a series of laboratory incubations using soils of two contrasting sitesfrom a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH_4) oxidation rates weremeasured to study the effects of inorganic N ...In a series of laboratory incubations using soils of two contrasting sitesfrom a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH_4) oxidation rates weremeasured to study the effects of inorganic N inputs on CH_4 oxidation. For adrained site, subsurfacepeat (5--15 cm) at an initial 20 mu L CH_4 L^(-1) showed a significantly different (P < 0.05) CH_4oxidation rate compared to other soil depths, with a maximal rate of 20.9 ng CH_4 gDW (dryweight)^(-1) h^(-1); the underlying mineral soil layers (15--30 and 30--50 cm) also had a strongCH_4 oxidation capacity at about an initial 2 000 mu L CH_4 L^(-1). With a waterlogged site, theCH_4 oxidation rate in an aerobic incubation was significantly greater (P < 0 05) in the surfacesoil layer (0--5 cm) compared to the 15--30 and 30--50 cm depths. There was generally no or a veryweak effect from addition of NO_3^- on CH_4 oxidation. In marked contrast, NH_4^+ salts, such as(NH_4)_2SO_4, NH_4Cl and NH_4NO_3, exhibited strong inhibitions, which varied as a function of theadded salts and the initial CH_4 level Increasing NH_4^+ usually resulted in greater inhibition andincreasing initial CH_4 concentrations resulted in less NH_4^+ inhibition on CH4 oxidation innatural high-altitude, low-latitude wetlands could be as important as has been reported foragricultural and forest soils. The NH_4^+ effects on the CH_4 oxidation rate need to be furtherinvestigated in a wide range of natural wetland soil types.展开更多
The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and...The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and however by controlled decomposition a high value and marketable energy source can be produced. Whey is normally used as a component of dairy products or as an additive for food product. In our work we focused on another utilization method: biogas generating from membrane separated fractions i.e.: permeate and concentrate of whey. The effect of the pH, thermal, microwave pre-treatment and their combinations on the biogas yield were investigated. Our results showed that the applied pre-treatments had significant effect on biogas production. In consequence of the hydrolysis of large molecules the biodegradability of the pre-treated whey fractions was enhanced, therefore the biogas and methane production yield increased significantly.展开更多
The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically fea...The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically feasible production of these types of fuels, it is necessary to have a total control of each variable involved in the process of production and how these factors affect the yield of fuel production. In this paper it is proposed a model of a digester to generate gas using a Vensim software designed to generate simulations in dynamic state. This simulation was developed using differential equations to model the behavior at each stage of the process and auxiliary conditions to complement the mathematical description of the model. The main factors in the biogas production are the retention time and the methanogen mortality ratio. For retention time lower than 10 h the process loses effectiveness due to bacterial growth is not completed efficiently, but a high retention time involves a bigger reactor and the yield of production decreases considerably for retention time higher than 40 h. The best yields were obtained for a mortality ratio in methanogen and acidogenic bacteria lower than 0.2 and a retention time of 30 h with a final production of 3.33 L by each kilogram of biomass.展开更多
A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this ...A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this equipment, which could be used to test different materials and be able to apply these results to the possible scaling to bio-digesters installed in the field. The experiments were carried out in a hybrid system bio-digester photovoltaic cells. The bio-digester is made of stainless steel with dimensions to treat an average of 10 kg of raw material and produce biogas from different organic materials. The reactor has been conditioned with temperature sensors, pressure and methane gas that allow monitoring the concentration of the gas and the conditions of operation during the time of digestion. The system has a photovoltaic array to provide the energy required to keep the temperature constant, The experiment was conducted using materials such as goat manure mixed with household waste, and various formulations of these materials were prepared. The experimental results were used to test the mathematical model.展开更多
During the energy crisis of the nation and normal day-to-day activities, biogas technology can be a potential alternative source of energy. Conventional biogas has considerably low output methane gas for a given organ...During the energy crisis of the nation and normal day-to-day activities, biogas technology can be a potential alternative source of energy. Conventional biogas has considerably low output methane gas for a given organic input. Considering the need for efficient biogas plant, SOWMS (solid organic waste managing system) has been designed and implemented on a trial basis by constructing community bin at ward number 4 of Gothatar VDC, Nepal. When composition of output biogas from the SOWMS was tested for five times, at different days, the average composition of gas was 55% methane and 35% carbon dioxide. The gas produced from 1 kg of waste is calculated to be 45 liters and pH value of slurry was found to be 7.8. These values indicate that designed system has good performance and that it can be optimized in the future research. Finally, this research work has some social implications that can have potential impact to uplift the society.展开更多
Producing of renewable energy--as well in world as in national context--was necessitated by the synergistic effect of the climate change and the long term, continuous price rise of the fossil energy carriers. Main rea...Producing of renewable energy--as well in world as in national context--was necessitated by the synergistic effect of the climate change and the long term, continuous price rise of the fossil energy carriers. Main reasons for the spread of renewable energy sources are to increase the security of the energy supply or in optimal case, to realize the total energy independence. Furthermore, numerous studies demonstrate that production and also utilization of biofuels--including the organic waste-based fuels--are environmentally sustainable and have positive impact for the security of energy supply. This paper deals with production of biogas (from agricultural organic wastes) for energy. The production of biogas and the other biofuels will help you find the balance in agriculture because they can be generated from biomass, agricultural wastes and non-food plant material. In addition to the objective of saving emissions, EU biofuels policy aims to ensure the necessary energy and to decrease unemployment. So this paper would like to contribute to the EU requirements through the research. The producing system can be expansible by utilization of other organic material, so it is supported the efficient operation.展开更多
A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot ...A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation. We hypothesized that cattle slurry application enhanced CO2 and N20 fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input, and that higher levels of CO2 and N20 emissions could be expected by increasing soil organic C (SOC) and N contents. Biogas digestate and cattle slurry, at a rate of 150 kg NH+-N ha-1, were incorporated into 3 soil types with low, medium, and high SOC contents (Cambisol, Mollic Gleysol, and Sapric Histosol, termed Clow, Cmedium, and Chigh, respectively). The GHG exchange (CO2, CH4, and N20) was measured on 5 replicates over a period of 22 d using the closed chamber technique. The application of cattle slurry resulted in significantly higher CO2 and N20 fluxes compared to the application of biogas digestate. No differences were observed in CH4 exchange, which was close to zero for all treatments. Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types, whereas the highest N20 emissions were observed in Cmedium. Thus, the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.展开更多
基金Projects 40730422 supported by the National Natural Science Foundation of China2006AA06Z231 by the Hi-tech Research and Development Program of Chinapart of a Sino-Aus-tralian special joint project of science and technology(407112365)
文摘Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has been investigated in China since the 1990s. Advances in mechanism of CO2 enhanced CBM recovery (CO2-ECBM) in China are reviewed in light of certain aspects, such as the competitive multi-component gas adsorption, sorption-induced coal swelling/shrinkage and its potential effect on CBM production and numerical simulation for CO2-ECBM recovery. Newer investigations for improving the technology are discussed. It is suggested that a comprehensive feasibility demonstration in terms of geology, technology, economics and environment-carrying capacity is necessary for a successful application of the technology for CBM recovery in China. The demonstration should be car-ried out after more investigations into such facets as the control of coal components and structure to a competitive multi-component-gas adsorption, the behavior and essence of super-critical adsorption by coal of gas, environmental and safe feasi-bility of coal mining after CO2 injection and more extensive pilot tests for CO2-ECBM recovery.
基金Project supported by the Knowledge Innovation Project in Resource and Environment Fields, Chinese Academy of Sciences (No. KZCX3-SW-128), the Open Foundation of the State Key Laboratory of Gas Geochemistry (SJJ-01-07), and the National Key Basic Research
文摘In a series of laboratory incubations using soils of two contrasting sitesfrom a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH_4) oxidation rates weremeasured to study the effects of inorganic N inputs on CH_4 oxidation. For adrained site, subsurfacepeat (5--15 cm) at an initial 20 mu L CH_4 L^(-1) showed a significantly different (P < 0.05) CH_4oxidation rate compared to other soil depths, with a maximal rate of 20.9 ng CH_4 gDW (dryweight)^(-1) h^(-1); the underlying mineral soil layers (15--30 and 30--50 cm) also had a strongCH_4 oxidation capacity at about an initial 2 000 mu L CH_4 L^(-1). With a waterlogged site, theCH_4 oxidation rate in an aerobic incubation was significantly greater (P < 0 05) in the surfacesoil layer (0--5 cm) compared to the 15--30 and 30--50 cm depths. There was generally no or a veryweak effect from addition of NO_3^- on CH_4 oxidation. In marked contrast, NH_4^+ salts, such as(NH_4)_2SO_4, NH_4Cl and NH_4NO_3, exhibited strong inhibitions, which varied as a function of theadded salts and the initial CH_4 level Increasing NH_4^+ usually resulted in greater inhibition andincreasing initial CH_4 concentrations resulted in less NH_4^+ inhibition on CH4 oxidation innatural high-altitude, low-latitude wetlands could be as important as has been reported foragricultural and forest soils. The NH_4^+ effects on the CH_4 oxidation rate need to be furtherinvestigated in a wide range of natural wetland soil types.
文摘The wastes and the by-products of food industrial technologies are suitable for bioenergy generating because of the high organic matter content. Anaerobic digestion is the eldest technology for waste stabilization and however by controlled decomposition a high value and marketable energy source can be produced. Whey is normally used as a component of dairy products or as an additive for food product. In our work we focused on another utilization method: biogas generating from membrane separated fractions i.e.: permeate and concentrate of whey. The effect of the pH, thermal, microwave pre-treatment and their combinations on the biogas yield were investigated. Our results showed that the applied pre-treatments had significant effect on biogas production. In consequence of the hydrolysis of large molecules the biodegradability of the pre-treated whey fractions was enhanced, therefore the biogas and methane production yield increased significantly.
文摘The design and building of new alternative fuel plants is an increasing necessity to replace old technology and non-renewable fossil fuels. To optimize the performance of these plants and to obtain an economically feasible production of these types of fuels, it is necessary to have a total control of each variable involved in the process of production and how these factors affect the yield of fuel production. In this paper it is proposed a model of a digester to generate gas using a Vensim software designed to generate simulations in dynamic state. This simulation was developed using differential equations to model the behavior at each stage of the process and auxiliary conditions to complement the mathematical description of the model. The main factors in the biogas production are the retention time and the methanogen mortality ratio. For retention time lower than 10 h the process loses effectiveness due to bacterial growth is not completed efficiently, but a high retention time involves a bigger reactor and the yield of production decreases considerably for retention time higher than 40 h. The best yields were obtained for a mortality ratio in methanogen and acidogenic bacteria lower than 0.2 and a retention time of 30 h with a final production of 3.33 L by each kilogram of biomass.
文摘A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this equipment, which could be used to test different materials and be able to apply these results to the possible scaling to bio-digesters installed in the field. The experiments were carried out in a hybrid system bio-digester photovoltaic cells. The bio-digester is made of stainless steel with dimensions to treat an average of 10 kg of raw material and produce biogas from different organic materials. The reactor has been conditioned with temperature sensors, pressure and methane gas that allow monitoring the concentration of the gas and the conditions of operation during the time of digestion. The system has a photovoltaic array to provide the energy required to keep the temperature constant, The experiment was conducted using materials such as goat manure mixed with household waste, and various formulations of these materials were prepared. The experimental results were used to test the mathematical model.
文摘During the energy crisis of the nation and normal day-to-day activities, biogas technology can be a potential alternative source of energy. Conventional biogas has considerably low output methane gas for a given organic input. Considering the need for efficient biogas plant, SOWMS (solid organic waste managing system) has been designed and implemented on a trial basis by constructing community bin at ward number 4 of Gothatar VDC, Nepal. When composition of output biogas from the SOWMS was tested for five times, at different days, the average composition of gas was 55% methane and 35% carbon dioxide. The gas produced from 1 kg of waste is calculated to be 45 liters and pH value of slurry was found to be 7.8. These values indicate that designed system has good performance and that it can be optimized in the future research. Finally, this research work has some social implications that can have potential impact to uplift the society.
文摘Producing of renewable energy--as well in world as in national context--was necessitated by the synergistic effect of the climate change and the long term, continuous price rise of the fossil energy carriers. Main reasons for the spread of renewable energy sources are to increase the security of the energy supply or in optimal case, to realize the total energy independence. Furthermore, numerous studies demonstrate that production and also utilization of biofuels--including the organic waste-based fuels--are environmentally sustainable and have positive impact for the security of energy supply. This paper deals with production of biogas (from agricultural organic wastes) for energy. The production of biogas and the other biofuels will help you find the balance in agriculture because they can be generated from biomass, agricultural wastes and non-food plant material. In addition to the objective of saving emissions, EU biofuels policy aims to ensure the necessary energy and to decrease unemployment. So this paper would like to contribute to the EU requirements through the research. The producing system can be expansible by utilization of other organic material, so it is supported the efficient operation.
文摘A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation. We hypothesized that cattle slurry application enhanced CO2 and N20 fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input, and that higher levels of CO2 and N20 emissions could be expected by increasing soil organic C (SOC) and N contents. Biogas digestate and cattle slurry, at a rate of 150 kg NH+-N ha-1, were incorporated into 3 soil types with low, medium, and high SOC contents (Cambisol, Mollic Gleysol, and Sapric Histosol, termed Clow, Cmedium, and Chigh, respectively). The GHG exchange (CO2, CH4, and N20) was measured on 5 replicates over a period of 22 d using the closed chamber technique. The application of cattle slurry resulted in significantly higher CO2 and N20 fluxes compared to the application of biogas digestate. No differences were observed in CH4 exchange, which was close to zero for all treatments. Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types, whereas the highest N20 emissions were observed in Cmedium. Thus, the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.