Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge ...Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge but an industrial problem as well.The objective of this study is to introduce a concept of large-scale,non-grid-connected wind power(LSNGCWP) industrial zones and establish an evaluation model to assess their industrial arrangement.The data of wind energy,industry,nature resources and socio-economy were collected in this study.Using spatial overlay analysis of geographic information system,this study proposes a spatial arrangement of the LSNGCWP indus-trial zones in the coastal areas of China,which could be summarized as the 'one line and three circles' structure,which will contribute to the optimization of the industrial structure,advance the wind power technology,coordinate the multi-industrial cooperation,and upgrade the industrial transformation of China's coastal areas.展开更多
Migrating landbirds are known to follow coast lines and concentrate on peninsulas prior to crossing water bodies, es- pecially during daylight but also at night, creating enhanced potential collision hazards with man-...Migrating landbirds are known to follow coast lines and concentrate on peninsulas prior to crossing water bodies, es- pecially during daylight but also at night, creating enhanced potential collision hazards with man-made objects. Knowing where these avian migration "hot-spots" occur in time and space is vital to improve flight safety and inform the spatial planning process (e.g. environmental assessments for offshore windfarms). We developed a simple spatial model to identify avian migration hot- spots in coastal areas based on prevailing migration orientation and coastline features known, from visual and radar observations, to concentrate migrating landbirds around land masses. Regional scale model validation was achieved by combining nocturnal passerine movement data gathered from two tier radar coverage (long-range dual-polarization Doppler weather radar and short- range marine surveillance radar) and standardised bird ringing. Applied on a national scale, the model correctly identified the ten most important Danish coastal hot-spots for spring migrants and predicted the relative numbers of birds that concentrated at each site. These bird numbers corresponded well with historical observational data. Here, we provide a potential framework for the es- tablishment of the first three-dimensional avian airspace sanctuaries, which could contribute to more effective conservation of long-distance migratory birds [Current Zoology 60 (5): 680-691, 2014].展开更多
基金Under the auspices of National Basic Research Program (No.2007CB210306)
文摘Constructing an industrial system for a large-scale,non-grid-connected wind power industry is a key step towards the diverse utilization of wind power.However,wind power exploitation is not only a technical challenge but an industrial problem as well.The objective of this study is to introduce a concept of large-scale,non-grid-connected wind power(LSNGCWP) industrial zones and establish an evaluation model to assess their industrial arrangement.The data of wind energy,industry,nature resources and socio-economy were collected in this study.Using spatial overlay analysis of geographic information system,this study proposes a spatial arrangement of the LSNGCWP indus-trial zones in the coastal areas of China,which could be summarized as the 'one line and three circles' structure,which will contribute to the optimization of the industrial structure,advance the wind power technology,coordinate the multi-industrial cooperation,and upgrade the industrial transformation of China's coastal areas.
文摘Migrating landbirds are known to follow coast lines and concentrate on peninsulas prior to crossing water bodies, es- pecially during daylight but also at night, creating enhanced potential collision hazards with man-made objects. Knowing where these avian migration "hot-spots" occur in time and space is vital to improve flight safety and inform the spatial planning process (e.g. environmental assessments for offshore windfarms). We developed a simple spatial model to identify avian migration hot- spots in coastal areas based on prevailing migration orientation and coastline features known, from visual and radar observations, to concentrate migrating landbirds around land masses. Regional scale model validation was achieved by combining nocturnal passerine movement data gathered from two tier radar coverage (long-range dual-polarization Doppler weather radar and short- range marine surveillance radar) and standardised bird ringing. Applied on a national scale, the model correctly identified the ten most important Danish coastal hot-spots for spring migrants and predicted the relative numbers of birds that concentrated at each site. These bird numbers corresponded well with historical observational data. Here, we provide a potential framework for the es- tablishment of the first three-dimensional avian airspace sanctuaries, which could contribute to more effective conservation of long-distance migratory birds [Current Zoology 60 (5): 680-691, 2014].