It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hy...It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hydraulic characteristics of the flow,the aerator devices were for the first time classified.The theoretical considerations were performed about the jet length and cavity flow regime with the influencing factors.Comparing with the behavior of the flow through the aerator of discharge tunnels,the flow regimes of the cavity below spillway aerators were experimentally investigated,and the empirical expressions were presented to identify the conversions of the cavity flow regimes,including fully filled cavity,partially filled cavity,and net air cavity.Some issues of the design of the aerator devices were suggested in the present work.展开更多
To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics o...To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics of the com- pressor cascade, this paper performed both numerical and experimcntal works on the same compressor cascade. The experiment mainly focused on the cases of low Mach number (Ma = 0.1), and cases with different Mach numbers (0.1, 0.3, 0.7) and different incidence angles (-5, 0, 5) are investigated by the numerical method. The case without the airfoil-probe tube was referenced as the baseline, and other three cases with the airfoil-probe tubes installed in different chordwise positions O0%, 50%, 70% of the chord length) were studied. The diameter of the airfoil-probe tube is 3ram, which is configured as 300% amplification of some particular airfoil-probe ac- cording to the geometrical similarity principle. The results show that the airfoil-probe tubes have a negative in- fluenc~ on the flow capacity of the cascade at all investigation points. The separations and the large scale stream- wise vortices that induced by the airfoil-probe tube on the pressure side cause most the losses at the high Mach number. The influence of the airfoil-probe tube on the flow field in the vicinity of the pressure side surface is lo- cal separation at the low Mach number. The airfoil-probe tubes also have a clearly effect on the leakage flow. It decreases the mass flow of the leakage flow and weakens the intensity of the leakage vortex, but enlarges the in- fluence area. The total pressure loss of the case that the tube is installed at the half chordwise position is generally lower than other cases especially at the high Mach number, it can even decrease the losses compared with the ba- sic case.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51179114)the Innovative Project of Graduate Student in Jiangsu Province (Grant No. CXLX11_0443)
文摘It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hydraulic characteristics of the flow,the aerator devices were for the first time classified.The theoretical considerations were performed about the jet length and cavity flow regime with the influencing factors.Comparing with the behavior of the flow through the aerator of discharge tunnels,the flow regimes of the cavity below spillway aerators were experimentally investigated,and the empirical expressions were presented to identify the conversions of the cavity flow regimes,including fully filled cavity,partially filled cavity,and net air cavity.Some issues of the design of the aerator devices were suggested in the present work.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525supported by the 111 Project,No.B07009
文摘To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics of the com- pressor cascade, this paper performed both numerical and experimcntal works on the same compressor cascade. The experiment mainly focused on the cases of low Mach number (Ma = 0.1), and cases with different Mach numbers (0.1, 0.3, 0.7) and different incidence angles (-5, 0, 5) are investigated by the numerical method. The case without the airfoil-probe tube was referenced as the baseline, and other three cases with the airfoil-probe tubes installed in different chordwise positions O0%, 50%, 70% of the chord length) were studied. The diameter of the airfoil-probe tube is 3ram, which is configured as 300% amplification of some particular airfoil-probe ac- cording to the geometrical similarity principle. The results show that the airfoil-probe tubes have a negative in- fluenc~ on the flow capacity of the cascade at all investigation points. The separations and the large scale stream- wise vortices that induced by the airfoil-probe tube on the pressure side cause most the losses at the high Mach number. The influence of the airfoil-probe tube on the flow field in the vicinity of the pressure side surface is lo- cal separation at the low Mach number. The airfoil-probe tubes also have a clearly effect on the leakage flow. It decreases the mass flow of the leakage flow and weakens the intensity of the leakage vortex, but enlarges the in- fluence area. The total pressure loss of the case that the tube is installed at the half chordwise position is generally lower than other cases especially at the high Mach number, it can even decrease the losses compared with the ba- sic case.