The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on...The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex(TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex,the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.展开更多
To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RAN...To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.展开更多
基金funded by the National Natural Science Foundation of China,Grant No.51006007,51136003 and 50976009
文摘The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex(TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex,the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51236006, 51576153)
文摘To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.