This study aims to investigate the effects of region and three regional dominated mangrove species(Avicennia marina, Aegiceras corniculatum and Kandelia candel) on the distribution of inorganic nitrogen and phosphorus...This study aims to investigate the effects of region and three regional dominated mangrove species(Avicennia marina, Aegiceras corniculatum and Kandelia candel) on the distribution of inorganic nitrogen and phosphorus. Measurement of the inorganic nitrogen and phosphorus and enzymatic activities was carried out in soils covered by three mangrove species in the Quanzhou Bay estuarine wetlands, a typical coastal wetland in China.Species with a higher biomass in upstream and midstream absorb more nitrogen from soils, and the retention of the available phosphorus in the soils of different regions causes the regional variation of phosphorus. In areas dominated by A. marina, nitrate nitrogen is lower while available phosphorus is higher. Meanwhile, nitrate nitrogen and available phosphorus are higher in the soils covered by K. candel.Moreover, all three species affect the elemental and enzymic stoichiometry. The mangrove species influences the diversity of the elemental and enzymic stoichiometric relationship through differential microenvironments, which induce the biodiversity of wetland ecosystems. Thus, this study may facilitate a better understanding of the transformation ability of mangroves to nitrogen and phosphorus and will therefore be beneficial for providing a basis for the ecological restoration of estuarine wetlands.展开更多
基金financial support for this project provided by National Science and Technology Support Program (2009BADB2B04-03)‘‘Hundred Talents Program’’ of Chinese Academy of Sciences
文摘This study aims to investigate the effects of region and three regional dominated mangrove species(Avicennia marina, Aegiceras corniculatum and Kandelia candel) on the distribution of inorganic nitrogen and phosphorus. Measurement of the inorganic nitrogen and phosphorus and enzymatic activities was carried out in soils covered by three mangrove species in the Quanzhou Bay estuarine wetlands, a typical coastal wetland in China.Species with a higher biomass in upstream and midstream absorb more nitrogen from soils, and the retention of the available phosphorus in the soils of different regions causes the regional variation of phosphorus. In areas dominated by A. marina, nitrate nitrogen is lower while available phosphorus is higher. Meanwhile, nitrate nitrogen and available phosphorus are higher in the soils covered by K. candel.Moreover, all three species affect the elemental and enzymic stoichiometry. The mangrove species influences the diversity of the elemental and enzymic stoichiometric relationship through differential microenvironments, which induce the biodiversity of wetland ecosystems. Thus, this study may facilitate a better understanding of the transformation ability of mangroves to nitrogen and phosphorus and will therefore be beneficial for providing a basis for the ecological restoration of estuarine wetlands.