期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
保持特征的变尺度DEM泊松重构算法 被引量:3
1
作者 李晓丽 安天庆 +1 位作者 吕海深 杜振龙 《兰州理工大学学报》 CAS 北大核心 2014年第3期111-115,共5页
提出一种保持特征的变尺度DEM泊松重构算法.该算法提取DEM特征,改变特征的尺度,利用泊松偏微分方程重构尺度变化后的DEM,并把所提方法应用于南小河沟流域,对重构的不同尺度DEM提取坡度、坡向等地形因子特征进行对比分析研究.实验结果表... 提出一种保持特征的变尺度DEM泊松重构算法.该算法提取DEM特征,改变特征的尺度,利用泊松偏微分方程重构尺度变化后的DEM,并把所提方法应用于南小河沟流域,对重构的不同尺度DEM提取坡度、坡向等地形因子特征进行对比分析研究.实验结果表明,以原始DEM为基础,该算法能够重构出精度明显改善的多尺度DEM. 展开更多
关键词 DEM 尺度变换 泊松偏微分方程 地形因子
下载PDF
Generalized Toda Mechanics Associated with Loop Algebras L(Cr) and L(Dr) and Their Reductions
2
作者 YANGZhan-Ying ZHAOLiu +1 位作者 LIUWang-Yun SHIKang-Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期1-8,共8页
We construct a class of integrable generalization of Toda mechanics withlong-range interactions. These systems are associated with the loop algebras L(C_r) and L(D_r) inthe sense that their Lax matrices can he realize... We construct a class of integrable generalization of Toda mechanics withlong-range interactions. These systems are associated with the loop algebras L(C_r) and L(D_r) inthe sense that their Lax matrices can he realized in terms of the c = 0 representations of theaffine Lie algebras C_r~((1)) and D_r~((1)) and the interactions pattern involved bears the typicalcharacters of the corresponding root systems. We present the equations of motion and the Hamiltoninnstructure. These generalized systems can be identified unambiguously by specifying the underlyingloop algebra together with an ordered pair of integers (n, m). It turns out that different systemsassociated with the same underlying loop algebra but with different pairs of integers (n_1, m_1) and(n_2, m_2) with n_2 【 n_1 and m_2 【 m_2 can be related by a nested Hamiltonian reduction procedure.For all nontrivial generalizations, the extra coordinates besides the standard Toda variables arePoisson non-commute, and when either n or m ≥ 3, the Poisson structure for the extra coordinatevariables becomes some Lie algebra (i.e. the extra variables appear linearly on the right-hand sideof the Poisson brackets). In the quantum case, such generalizations will become systems withnoncommutative variables without spoiling the integrability. 展开更多
关键词 TODA many-body system poisson bracket
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部