A class of generalization of Toda mechanics with long range interactions isconstructed in this paper. These systems are associated with the loop algebras L(B_r) in the sensethat their Lax matrices can be realized in t...A class of generalization of Toda mechanics with long range interactions isconstructed in this paper. These systems are associated with the loop algebras L(B_r) in the sensethat their Lax matrices can be realized in terms of the c = 0 representations of the affine Liealgebras B_r~((1)) . We adopt a pair of ordered integers (m, n) to describe the Toda mechanicssystem when we present the equations of motion and the Hamiltonian structure. We also extract theclassical r matrix which satisfy the classical Yang-Baxter relation. Such generalizations willbecome systems with noncommutative variables in the quantum case.展开更多
文摘A class of generalization of Toda mechanics with long range interactions isconstructed in this paper. These systems are associated with the loop algebras L(B_r) in the sensethat their Lax matrices can be realized in terms of the c = 0 representations of the affine Liealgebras B_r~((1)) . We adopt a pair of ordered integers (m, n) to describe the Toda mechanicssystem when we present the equations of motion and the Hamiltonian structure. We also extract theclassical r matrix which satisfy the classical Yang-Baxter relation. Such generalizations willbecome systems with noncommutative variables in the quantum case.