The recretohalophyte swith specialized process, salt secreting structure, salt glands or salt bladders, can secrete salt from thier bodies, and they can easily adapt themselves to many kinds of salt habitats. Recretoh...The recretohalophyte swith specialized process, salt secreting structure, salt glands or salt bladders, can secrete salt from thier bodies, and they can easily adapt themselves to many kinds of salt habitats. Recretohalophyte resources are rich in China, and they can be widely used with great value. This paper describes the species, geographical distribution and utilization of recretohalophytes in China and summarizes the advance of study on salt secreting structure and mechanism of the recretohalophytes. Futher researches are also proposed in this paper. Fig 4, Ref展开更多
Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. Th...Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3- exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes), cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.展开更多
文摘The recretohalophyte swith specialized process, salt secreting structure, salt glands or salt bladders, can secrete salt from thier bodies, and they can easily adapt themselves to many kinds of salt habitats. Recretohalophyte resources are rich in China, and they can be widely used with great value. This paper describes the species, geographical distribution and utilization of recretohalophytes in China and summarizes the advance of study on salt secreting structure and mechanism of the recretohalophytes. Futher researches are also proposed in this paper. Fig 4, Ref
基金the "UTE for CIMA project" as well as by a grant from the "Institute de Salud CarlosⅢ" (PI051098). J. M. B. has a grant from the Spanish Ministry of Science and Technology
文摘Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3- exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes), cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.