Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal disp...Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.展开更多
Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss...Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.展开更多
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2006CB601206)
文摘Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.
基金supported by the National Natural Science Foundation of China (Grant No. 10472006)
文摘Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.