The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface...The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface of Ho et al. (J. Chem. Phys. 119, 3063 (2003)). The peaks of the product angular distribution are found to be in both backward and forward directions for the two title reactions. The product rotational angular momentum is not only aligned, but also oriented along the negative direction of y-axis. These theoretical results are in good agreement with recent experimental findings for the two title reactions. The isotopic effect is also revealed and primarily attributed to the difference of the mass factor in the two title reactions.展开更多
Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics metho...Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equa- tion, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.展开更多
The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies ...The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.展开更多
The implementation of molecular profiling technologies in oncology deepens our knowledge for the molecular landscapes of cancer diagnoses, identifying aberrations that could be linked with specific therapeutic vulnera...The implementation of molecular profiling technologies in oncology deepens our knowledge for the molecular landscapes of cancer diagnoses, identifying aberrations that could be linked with specific therapeutic vulnerabilities. In particular, there is an increasing list of molecularly targeted anticancer agents undergoing clinical development that aim to block specific molecular aberrations. This leads to a paradigm shift, with an increasing list of specific aberrations dictating the treatment of patients with cancer. This paradigm shift impacts the field of clinical trials, since the classical approach of having clinico-pathological disease characteristics dictating the patients' enrolment in oncology trials shifts towards the implementation of molecular profiling as prescreening step. In order to facilitate the successful clinical development of these new anticancer drugs within specific molecular niches of cancer diagnoses, there have been developed new, innovative trial designs that could be classified as follows: i)longitudinal cohort studies that implement(or not) "nested" downstream trials, 2) studies that assess the clinical utility of molecular profiling, 3) "master" protocol trials, iv) "basket" trials, v) trials following an adaptive design. In the present article, we review these innovative study designs, providing representative examples from each category and we discuss the challenges that still need to be addressed in this era of new generation oncology trials implementing molecular profiling. Emphasis is put on the field of breast cancer clinical trials.展开更多
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the gr...Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.展开更多
The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are se...The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.展开更多
The rhythm and lifestyle of the twenty-first century are closely connected to information and communication technology (ICT) which is essential for further development of the economy and society. In the world of glo...The rhythm and lifestyle of the twenty-first century are closely connected to information and communication technology (ICT) which is essential for further development of the economy and society. In the world of globalization and rapid changes, the application of ICT in schools has become a significant factor of social development. Classic methods of teaching as well as managing a school interweave with the modern ones. Lifelong learning has become a necessity. The extent of ICT application is demonstrated in this paper.展开更多
As is generally known, Newton's notion of universal gravitation surpassed various theories of particular gravities in the early modem age, as represented mainly by Kepler and Hooke. In his seminal work Hooke and the ...As is generally known, Newton's notion of universal gravitation surpassed various theories of particular gravities in the early modem age, as represented mainly by Kepler and Hooke. In his seminal work Hooke and the Law of Universal Gravitation: A Reappraisal of a Reappraisal Richard S. Westfall argues that Hooke could not reach beyond the concept of spatially bounded particular gravities, as he deployed the method of analogy between the material principle of congruity and incongruity and the extension of gravitational spheres and their action at a distance. However, the doctrine of universal gravitation does not exclude the nature of particular gravities; it is predicated on the notion of an infinite expansion of individual-gravitational spheres and their uniform nature, namely the mutual and centripetal attraction. In my treatise 1 attempt to reinvestigate the nature and structure of gravitation, as established historically in the framework of Newtonian Classical Mechanics, by a method of structural intuition. It examines how the structural intuition, as represented in the celestial-mechanical intuitions of Hooke and Kepler, could unfold into an innovative process within the context of early modem mechanical philosophy, attaining thus a historical siglaificance and legitimacy as against the prevailing Newtonian method of geometric-mathematical axiomatization of mechanical principles. It also explores the actual demonstrative features of the tidal phenomenon with regard to its lunar- and solar-gravitational causation, which has been considered to date to be an important piece of empirical evidence for the theory of universal gravitation.展开更多
Economic movements have close relation with historical transformations. Historical and social transformations have seriously determined economic views, so, economic movements have been the indicators of economic wars ...Economic movements have close relation with historical transformations. Historical and social transformations have seriously determined economic views, so, economic movements have been the indicators of economic wars of social classes. But no concept can describe sharp contrast in economics better than the two opponent concepts in economics: "orthodox" and "heterodox" economics. In this article, the reason why neo-classic economics, also called as orthodox economics, has a serious place in economic literature while the opponent's economic movements, named heterodox economics, do not defend only one "truth" and are not as important as orthodox economics will be examined. While doing this examination, Louis Althusser's "ideology" and Antonio Gramsci's "hegemony" will help us as these two concepts are quite instructive in understanding the irreplaceable significance of orthodox economics. As a result, by discussing alternative point of views about economics, positive emphasis of multivocality in economics literature will be revealed. On the other hand, every heterodox economics cannot criticize orthodox economics in the same way. In this study, institutional economics, which is accepted to be part of heterodox economics, will be discussed thoroughly. Institutional economics had a serious attitude against orthodox economics. In this study, generally the points in orthodox economics that institutional economics opposes will be emphasized, and although both economics approaches' ideological attitude will be attempted to be discussed generally, it will become easy to discuss the reason why heterodox economics developed an opposing ideology against the ideology of orthodox economics.展开更多
The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstractio...The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low "reactant-like" barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational excitation of the H20 reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.展开更多
A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and q...A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods.展开更多
基金ACKNOWLEDGMENTS The authors thank Prof. Ke-li Han for providing stereodynamics QCT code, and thank Dr. T. S. Ho and Prof. H. Rabitz for providing the potential energy surface. This work is supported by the National Natural Science Foundation of China (No.10947103), the Foundation for Outstanding Young Scientist in Shandong Province (No.2008BS01017), and the Young Fhnding of Jining University (No.2009QNKJ02).
文摘The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface of Ho et al. (J. Chem. Phys. 119, 3063 (2003)). The peaks of the product angular distribution are found to be in both backward and forward directions for the two title reactions. The product rotational angular momentum is not only aligned, but also oriented along the negative direction of y-axis. These theoretical results are in good agreement with recent experimental findings for the two title reactions. The isotopic effect is also revealed and primarily attributed to the difference of the mass factor in the two title reactions.
基金supported by the National Key R&D Program of China(No.2017YFB0203405)the National Natural Science Foundation of China(No.21421003)
文摘Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equa- tion, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.
文摘The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.
文摘The implementation of molecular profiling technologies in oncology deepens our knowledge for the molecular landscapes of cancer diagnoses, identifying aberrations that could be linked with specific therapeutic vulnerabilities. In particular, there is an increasing list of molecularly targeted anticancer agents undergoing clinical development that aim to block specific molecular aberrations. This leads to a paradigm shift, with an increasing list of specific aberrations dictating the treatment of patients with cancer. This paradigm shift impacts the field of clinical trials, since the classical approach of having clinico-pathological disease characteristics dictating the patients' enrolment in oncology trials shifts towards the implementation of molecular profiling as prescreening step. In order to facilitate the successful clinical development of these new anticancer drugs within specific molecular niches of cancer diagnoses, there have been developed new, innovative trial designs that could be classified as follows: i)longitudinal cohort studies that implement(or not) "nested" downstream trials, 2) studies that assess the clinical utility of molecular profiling, 3) "master" protocol trials, iv) "basket" trials, v) trials following an adaptive design. In the present article, we review these innovative study designs, providing representative examples from each category and we discuss the challenges that still need to be addressed in this era of new generation oncology trials implementing molecular profiling. Emphasis is put on the field of breast cancer clinical trials.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.
基金Projects(51178263,51378307)supported by the National Natural Science Foundation of China
文摘The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.
文摘The rhythm and lifestyle of the twenty-first century are closely connected to information and communication technology (ICT) which is essential for further development of the economy and society. In the world of globalization and rapid changes, the application of ICT in schools has become a significant factor of social development. Classic methods of teaching as well as managing a school interweave with the modern ones. Lifelong learning has become a necessity. The extent of ICT application is demonstrated in this paper.
文摘As is generally known, Newton's notion of universal gravitation surpassed various theories of particular gravities in the early modem age, as represented mainly by Kepler and Hooke. In his seminal work Hooke and the Law of Universal Gravitation: A Reappraisal of a Reappraisal Richard S. Westfall argues that Hooke could not reach beyond the concept of spatially bounded particular gravities, as he deployed the method of analogy between the material principle of congruity and incongruity and the extension of gravitational spheres and their action at a distance. However, the doctrine of universal gravitation does not exclude the nature of particular gravities; it is predicated on the notion of an infinite expansion of individual-gravitational spheres and their uniform nature, namely the mutual and centripetal attraction. In my treatise 1 attempt to reinvestigate the nature and structure of gravitation, as established historically in the framework of Newtonian Classical Mechanics, by a method of structural intuition. It examines how the structural intuition, as represented in the celestial-mechanical intuitions of Hooke and Kepler, could unfold into an innovative process within the context of early modem mechanical philosophy, attaining thus a historical siglaificance and legitimacy as against the prevailing Newtonian method of geometric-mathematical axiomatization of mechanical principles. It also explores the actual demonstrative features of the tidal phenomenon with regard to its lunar- and solar-gravitational causation, which has been considered to date to be an important piece of empirical evidence for the theory of universal gravitation.
文摘Economic movements have close relation with historical transformations. Historical and social transformations have seriously determined economic views, so, economic movements have been the indicators of economic wars of social classes. But no concept can describe sharp contrast in economics better than the two opponent concepts in economics: "orthodox" and "heterodox" economics. In this article, the reason why neo-classic economics, also called as orthodox economics, has a serious place in economic literature while the opponent's economic movements, named heterodox economics, do not defend only one "truth" and are not as important as orthodox economics will be examined. While doing this examination, Louis Althusser's "ideology" and Antonio Gramsci's "hegemony" will help us as these two concepts are quite instructive in understanding the irreplaceable significance of orthodox economics. As a result, by discussing alternative point of views about economics, positive emphasis of multivocality in economics literature will be revealed. On the other hand, every heterodox economics cannot criticize orthodox economics in the same way. In this study, institutional economics, which is accepted to be part of heterodox economics, will be discussed thoroughly. Institutional economics had a serious attitude against orthodox economics. In this study, generally the points in orthodox economics that institutional economics opposes will be emphasized, and although both economics approaches' ideological attitude will be attempted to be discussed generally, it will become easy to discuss the reason why heterodox economics developed an opposing ideology against the ideology of orthodox economics.
文摘The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low "reactant-like" barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational excitation of the H20 reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.
基金Funding support from NSERC of Canadaa research fellowship at Department of Physics and Astronomy,University of British Columbia are acknowledged
文摘A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods.