Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper est...Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper establishes the Kolmogorov type exponential inequalities of the partial sums of independent random variables as well as negatively dependent random variables under the sub-linear expectations. As applications of the exponential inequalities, the laws of the iterated logarithm in the sense of non-additive capacities are proved for independent or negatively dependent identically distributed random variables with finite second order moments.For deriving a lower bound of an exponential inequality, a central limit theorem is also proved under the sublinear expectation for random variables with only finite variances.展开更多
Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude ...Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude wave theory,and Darcy’s law is used for flow past porous structures.The varying bottom topography spanned over a finite interval connected by two semi-infinite intervals of uniform water depths.Eigenfunction expansion method is used to handle the solution in the regions of uniform bottom and a modified mild-slope equation along with jump conditions is employed for varying bottom topography.Reflection,transmission,and wave energy dissipation coefficients are obtained numerically by applying the matrix method to understand the effects of several physical quantities such as wavenumber,porosity,and angle of incidence.The transmission coefficient reduces significantly and the wave energy dissipation is high for the present model.Also,Bragg scattering is analyzed in the presence of step-type rippled bottom and presented in this paper.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11225104)the National Basic Research Program of China (Grant No. 2015CB352302)the Fundamental Research Funds for the Central Universities
文摘Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper establishes the Kolmogorov type exponential inequalities of the partial sums of independent random variables as well as negatively dependent random variables under the sub-linear expectations. As applications of the exponential inequalities, the laws of the iterated logarithm in the sense of non-additive capacities are proved for independent or negatively dependent identically distributed random variables with finite second order moments.For deriving a lower bound of an exponential inequality, a central limit theorem is also proved under the sublinear expectation for random variables with only finite variances.
基金Saista Tabssum acknowledges the Institute post-doctoral fellowship grant from Indian Institute of Technology,Bombay.
文摘Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude wave theory,and Darcy’s law is used for flow past porous structures.The varying bottom topography spanned over a finite interval connected by two semi-infinite intervals of uniform water depths.Eigenfunction expansion method is used to handle the solution in the regions of uniform bottom and a modified mild-slope equation along with jump conditions is employed for varying bottom topography.Reflection,transmission,and wave energy dissipation coefficients are obtained numerically by applying the matrix method to understand the effects of several physical quantities such as wavenumber,porosity,and angle of incidence.The transmission coefficient reduces significantly and the wave energy dissipation is high for the present model.Also,Bragg scattering is analyzed in the presence of step-type rippled bottom and presented in this paper.