期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
基于泛函序列时变自回归滑动平均模型的弹箭时变模态参数递推估计方法 被引量:3
1
作者 余磊 张永励 +1 位作者 袁梦笛 刘瑞卿 《兵工学报》 EI CAS CSCD 北大核心 2020年第11期2189-2197,共9页
随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的... 随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的递推估计方法。该方法采用墨西哥帽小波基作为TARMA模型时变系数的空间基底,并借鉴于无结构化TARMA模型递推估计思想,将投影参数矩阵视为振动响应数据长度的变量,实现了投影参数矩阵的递推估计。通过有限单元法建立阿里安V号芯级运载火箭时变有限元模型,对所提方法进行验证。结果表明:递推辨识方法与传统批量算法相比,在辨识精度上,3阶模态频率辨识结果最大相对误差在5%以内;在计算效率上,递推辨识方法的计算时间缩短了9.38倍。 展开更多
关键词 弹箭时变结构 模态参数辨识 递推估计 泛函序列时变自回归滑动平均模型
下载PDF
差分自回归滑动平均模型对应变能释放序列的预测应用
2
作者 郑建常 许萍 +2 位作者 冀东普 林眉 赵金花 《国际地震动态》 2009年第4期68-69,共2页
将一定范围内的地震活动视为随机时间序列,则可以用线性回归的方法对未来的地震活动情况进行预测(Vere-Jones,1995)。在地震活动的研究中常采用白回归模型。
关键词 随机时间序列 自回归滑动平均模型 预测 应变能 应用 差分 地震活动 活动情况
下载PDF
自回归滑动平均混合模型在红细胞供应量预测中的应用 被引量:7
3
作者 黄国军 王乐三 +4 位作者 张统宇 胡玲玲 周伟标 施建华 何江江 《中国输血杂志》 CAS 北大核心 2016年第2期140-144,共5页
目的探讨建立月悬浮红细胞供应量预测模型,为采供血提供参考。方法分别以浦东血站2007年1月-2014年6月的月红细胞供应总量、A+、B+、O+和AB+4种血型红细胞月供应量作为标本建立自回归滑动平均混合模型(ARIMA),用2014年7月-12月的实际值... 目的探讨建立月悬浮红细胞供应量预测模型,为采供血提供参考。方法分别以浦东血站2007年1月-2014年6月的月红细胞供应总量、A+、B+、O+和AB+4种血型红细胞月供应量作为标本建立自回归滑动平均混合模型(ARIMA),用2014年7月-12月的实际值作为检验标本,用建立的最优模型预测2015年1-6月本站红细胞月供血量。结果经过序列平稳化、模型识别、建模和模型检验等步骤,月红细胞供应总量建立ARIMA(1,1,1)(1,1,1)12模型,调整决定系数(R2)=0.82,平均绝对百分比误差(MAPE)=5.98;A+型红细胞月供应量建立ARIMA(1,1,2)(1,1,1)12模型,调整R2=0.81,MAPE=8.42;B+型红细胞月供应量建立ARIMA(4,1,0)(1,1,1)12模型,调整R2=0.84,MAPE=7.23;O+型红细胞月供应量建立ARIMA(1,1,1)(0,1,1)12模型,调整R2=0.83,MAPE=6.63;AB+型红细胞月供应量建立ARIMA(1,1,0)(1,1,1)12模型,调整R2=0.80,MAPE=8.41。结论 ARIMA是一种短期预测精度较高模型,可用于红细胞供应量的预测。 展开更多
关键词 采供血 时间序列 自回归滑动平均混合模型
下载PDF
季节性自回归滑动平均混合模型及其在电力负荷预测中的应用 被引量:9
4
作者 叶舟 黄婷 +1 位作者 戴韧 陈康民 《四川电力技术》 2001年第1期5-8,25,共5页
电力负荷多具趋势性及周期性特性 ,并非所有预测模型都与此特性相吻合。重点分析季节性自回归滑动平均混合模型的预测特性 ,并通过具体算例验证其同时具有趋势性及周期性特性 ,非常适合用于电力负荷的预测分析。同时指出自回归滑动平均... 电力负荷多具趋势性及周期性特性 ,并非所有预测模型都与此特性相吻合。重点分析季节性自回归滑动平均混合模型的预测特性 ,并通过具体算例验证其同时具有趋势性及周期性特性 ,非常适合用于电力负荷的预测分析。同时指出自回归滑动平均混合模型受时间序列数据结构的约束较少 ,并通过具体算例 。 展开更多
关键词 电力负荷 预测特性 季节性自回归滑动平均混合模型 数据结构 负荷预测 随机模型 时间序列
下载PDF
乘积季节自回归积分滑动平均模型在长沙市手足口病发病率预测中的应用 被引量:10
5
作者 谈婷 陈立章 刘富强 《中南大学学报(医学版)》 CAS CSCD 北大核心 2014年第11期1170-1176,共7页
目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月... 目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月的手足口病发病率资料建立乘积季节ARIMA模型,以2013年9月至2014年2月的发病资料作为模型预测效果的检验样本,最后再用所得到的模型对2014年3月至2014年8月的月发病率进行预测。结果:经过序列平稳化、模型识别以及模型诊断后,建立乘积季节ARIMA模型(1,0,1)×(0,1,1)12,模型拟合度R2=0.81,预测均方根误差为8.29,平均绝对误差为5.83。结论:乘积季节ARIMA模型是一种较好的预测模型,所建模型拟合度较好,能为手足口病的防治工作提供参考。 展开更多
关键词 手足口病 时间序列 乘积季节自回归积分滑动平均模型
下载PDF
基于自回归滑动平均模型的我国房地产业态势研究
6
作者 盖伦 赵清斌 《金融经济(下半月)》 2013年第6期143-145,共3页
选择国房景气指数作为房地产行业的发展态势评价指标,利用时间序列分析法对1995年到2010年间的我国房地产开发业月度景气指数序列进行分析来建立短期预测模型,以期为房地产行业态势预测研究提供参考。经过单位根检验,一次差分和自回归,... 选择国房景气指数作为房地产行业的发展态势评价指标,利用时间序列分析法对1995年到2010年间的我国房地产开发业月度景气指数序列进行分析来建立短期预测模型,以期为房地产行业态势预测研究提供参考。经过单位根检验,一次差分和自回归,建立ARIMA(1,1,5)模型,并进行了短期预测和检验,验证了模型的有效性。 展开更多
关键词 房地产业 自回归滑动平均模型 国房景气指 发展态势 时间序列分析
下载PDF
自回归滑动平均模型中阶数及参数的确定 被引量:4
7
作者 杨振成 《统计与决策》 CSSCI 北大核心 2004年第12期8-9,共2页
关键词 自回归滑动平均模型 模型阶数 时间序列 建模方法 参数估计 经济预测
下载PDF
细菌性痢疾自回归滑动平均和非线性自回归组合模型预测研究 被引量:6
8
作者 王克伟 李金平 +2 位作者 邓超 吴郁 邬敏辰 《第二军医大学学报》 CAS CSCD 北大核心 2017年第10期1315-1320,共6页
目的探讨单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型与ARIMA和非线性自回归(nonlinear autoregressive,NAR)组合模型在细菌性痢疾预测中的应用。方法利用江苏省2004年1月至2015年2月的细菌性痢疾数据作... 目的探讨单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型与ARIMA和非线性自回归(nonlinear autoregressive,NAR)组合模型在细菌性痢疾预测中的应用。方法利用江苏省2004年1月至2015年2月的细菌性痢疾数据作为拟合样本,以2015年3月至2016年5月的数据作为预测样本;建立的模型分别为单纯ARIMA模型和ARIMA-NAR组合模型,然后根据2个模型的平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)和平均绝对百分比误差(mean absolute percentage error,MAPE)比较模型的效果,其值越小模型效果越好。结果在模型的拟合阶段,单纯ARIMA模型的MAE、MSE和MAPE分别为0.177 5、0.081 4和0.184 7,ARIMA-NAR组合模型分别为0.094 1、0.029 5和0.104 6。在模型的预测阶段,单纯ARIMA模型的MAE、MSE和MAPE也分别大于ARIMA-NAR组合模型。结论 ARIMA-NAR组合模型对于江苏省细菌性痢疾发病率时间序列的预测效果优于单纯ARIMA模型。建议尝试使用ARIMA-NAR组合模型预测细菌性痢疾的发病率。 展开更多
关键词 自回归滑动平均模型 非线性自回归模型 神经网络 时间序列 细菌性痢疾 预测
下载PDF
时序模型ARIMA在数据分析中的应用 被引量:1
9
作者 李玲玲 辛浩 《福建电脑》 2024年第4期25-29,共5页
时间序列是进行趋势分析的方法之一。随着大数据时代的到来,经济趋势、企业经营、市场预测和天气预测等常常需要进行预测和分析。本文对某知名化妆品公司2010年至2018年间的2122条股票数据,采用ARIMA模型进行趋势分析,预测未来的发展趋... 时间序列是进行趋势分析的方法之一。随着大数据时代的到来,经济趋势、企业经营、市场预测和天气预测等常常需要进行预测和分析。本文对某知名化妆品公司2010年至2018年间的2122条股票数据,采用ARIMA模型进行趋势分析,预测未来的发展趋势。通过模型的拟合与效果考核,所得到的结果说明了应用ARIMA模型对股票进行趋势分析时,可以取得较好的预测效果。 展开更多
关键词 时间序列 股票数据 预测模型 自回归积分滑动平均模型
下载PDF
某三甲中医医院ICU感染发生率时间序列分析及趋势预测
10
作者 杨丽萍 程立军 +5 位作者 李潇 杨雳畯 丁淑玉 王靖研 黄文莉 毛宝宏 《西部中医药》 2024年第9期78-82,共5页
目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrat... 目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrated moving average,ARIMA)对ICU感染发生趋势进行预测并评价其预测效果。结果:2019年1月至2024年2月某三甲中医医院ICU医院感染发生率为2.61%(232/8895);时间序列分析显示,ICU医院感染发生率波动较大且存在一定周期性,总体呈下降趋势。根据赤池信息准则和贝叶斯信息准则拟合,ARIMA(0,1,1)为最优预测模型。经参数估计与效果评价,感染发生率实际值均在预测值95%可信区间内,模型预测效果较好。结论:运用ARIMA对某三甲中医医院ICU医院感染发生率的预测结果良好,可显示其长期发生规律与趋势,能为医院感染监测提供科学依据。 展开更多
关键词 医院感染 重症监护病房 求和自回归滑动平均模型 时间序列 趋势预测
下载PDF
基于ARMAV模型和J-散度的结构损伤识别
11
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(ARMAV)模型 J-散度 时间序列分析
下载PDF
用对称映射ARMA模型的零极点研究子波相位对反射系数序列反演的影响 被引量:4
12
作者 张亚南 戴永寿 +3 位作者 陈健 魏玉琴 丁进杰 张漫漫 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期2043-2054,共12页
为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列... 为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列反演.理论分析表明,子波相位估计不准时反射系数序列反演结果中残留一个纯相位滤波器,该纯相位滤波器的相位谱为真实子波和构造子波的相位谱之差.采用丰度和变分作为评价方法,在反演结果中确定出真实的或准确的反射系数序列.仿真实验和实际数据处理结果也验证了子波相位对反射系数序列反演的影响规律和评价方法的有效性,为进一步提高反射系数序列反演结果精度指明了研究方向. 展开更多
关键词 地震子波 反射系数序列反演 纯相位滤波器 自回归滑动平均模型 评价方法
下载PDF
基于非线性时间序列的预测模型检验与优化的研究 被引量:16
13
作者 单伟 何群 《电子学报》 EI CAS CSCD 北大核心 2008年第12期2485-2489,共5页
模型的适用性检验和参数优化是系统建模的最关键环节,对于预测模型的适用性检验,常采用残差方差图、最小信息准则和AIC准则等方法,存在计算量大、准确性低、模型不唯一等缺点.本文给出采用自相关系数和偏自相关系数的拖尾先对ARIMA模型... 模型的适用性检验和参数优化是系统建模的最关键环节,对于预测模型的适用性检验,常采用残差方差图、最小信息准则和AIC准则等方法,存在计算量大、准确性低、模型不唯一等缺点.本文给出采用自相关系数和偏自相关系数的拖尾先对ARIMA模型检验,再对其进行F适用性检验,克服了由于观测样本的长度是有限的,偏相关的估计存在误差,拖尾时不能为ARMA定阶的缺陷,并采用具有超线性收敛性等诸多优点的变尺度法对模型参数进行了优化,得到了较为精确的、单一AIRMA模型,该方法可应用于网络流量模型的适用性检验和模型优化,为网络流量的预测、异常检测和服务器负载预测的应用奠定了坚实的基础. 展开更多
关键词 非线性 时间序列 适用性检验 自回归求和滑动平均模型
下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
14
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积式自回归滑动平均模型
下载PDF
基于ARMA模型的水文序列相依变异分级方法及验证 被引量:5
15
作者 谢平 霍竞群 +3 位作者 桑燕芳 吴林倩 李雅晴 牛静怡 《水利学报》 EI CSCD 北大核心 2021年第7期793-806,共14页
受自然和人为等因素的影响,水文情势和地理环境不断发生显著变化,不同水文要素形成的水文时间序列常呈现出一定的相依性。为定量研究水文序列中的这种相依现象,本文以自回归滑动平均模型ARMA为例,选取原始水文序列与其相依成分间的相关... 受自然和人为等因素的影响,水文情势和地理环境不断发生显著变化,不同水文要素形成的水文时间序列常呈现出一定的相依性。为定量研究水文序列中的这种相依现象,本文以自回归滑动平均模型ARMA为例,选取原始水文序列与其相依成分间的相关系数为衡量标准,提出对相依变异强弱程度分级的一种方法。先用公式推导的方式从原理上阐明相关系数与序列的自回归系数和滑动平均系数存在的关系,从而建立相关系数与序列自相关系数的联系,再选择合理阈值作为分级界限,把相关系数划分为5段区间,对应描述5种不同强弱的相依变异程度。分别以较低阶数的ARMA模型为例,通过统计试验验证了以相关系数作为分级指标的合理性。将所提方法分别应用于模拟时间序列和实测水文序列,并结合物理成因从气候变化和人类活动两个方面对实测径流序列的相依变异分级结果进行了分析与验证,结果表明该方法合理可靠。 展开更多
关键词 自回归滑动平均模型 相关系数 统计试验 分级 时间序列 相依变异
下载PDF
一种新的统计预测模型——多项式系数自回归模型 被引量:8
16
作者 吕永乐 《计算机工程与应用》 CSCD 2012年第3期237-241,共5页
传统的自回归滑动平均模型(ARMA)和新近出现的函数系数自回归模型(FAR)不能满足非线性时间序列预测分析的准确度与运算速度要求,为了改进预测性能,研究提出了一种新的统计预测模型——多项式系数自回归模型(PCAR)。给出了PCAR模型的表... 传统的自回归滑动平均模型(ARMA)和新近出现的函数系数自回归模型(FAR)不能满足非线性时间序列预测分析的准确度与运算速度要求,为了改进预测性能,研究提出了一种新的统计预测模型——多项式系数自回归模型(PCAR)。给出了PCAR模型的表示形式,详细探讨了PCAR模型的参数估计和阶次选择方法,在此基础上又提出了基于BIC准则的建模算法。同AR-MA模型相比,PCAR模型扩大了适用对象范围,有效降低了模型选择误差;同FAR模型相比,它具有参数模型的特点,避免了系数函数局部线性回归估计所存在的不足;分析了PCAR模型与ARMA、FAR模型的等价条件。通过实验分析得出了PCAR模型较ARMA、FAR模型的单步预测准确度分别提高了99.65%和18.7%的结论,而且PCAR建模运算所需时间仅为FAR模型的0.2%。 展开更多
关键词 时间序列分析 非线性预测 自回归模型 自回归滑动平均(ARMA)模型 函数系数自回归(FAR)模型
下载PDF
基于小波优化LSTM-ARMA模型的岩土工程非线性时间序列预测 被引量:11
17
作者 钱建固 吴安海 +2 位作者 季军 成龙 徐巍 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第8期1107-1115,共9页
为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)预测模型。首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预... 为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)预测模型。首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预测噪声项,并将趋势项预测值与噪声项预测值之和作为总的时间序列预测值。在此基础上,以上海云岭超深基坑工程为案例进行了基坑地表沉降分析,结果表明组合模型的预测精度要高于单一LSTM模型且更加稳定;进一步采用弹塑性有限元对基坑开挖诱发的地表沉降进行了预测,并与人工智能预测结果进行对比,验证了人工智预测模型的合理性。分析表明,当后续工况与前置工况所诱发的变形机理突变时,人工智能预测误差增大,但伴随后续工况的推进,人工智能预测误差将逐渐减小。 展开更多
关键词 岩土工程 非线性时间序列预测 小波分析 长短时记忆神经网络(LSTM) 自回归滑动平均模型(ARMA)
下载PDF
非线性时间序列预报的隐多分辨ARMA模型 被引量:1
18
作者 高伟 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期671-678,共8页
研究一类用于非线性时间序列预报的隐多分辨自回归滑动平均(ARMA)模型,该模型以ARMA模型为初始细水平模型(即隐多分辨模型的基本块).证明了模型的建模精度由水平问的方差决定.研究了新模型的自相关函数结构,给出了参数估计的Bayes方法... 研究一类用于非线性时间序列预报的隐多分辨自回归滑动平均(ARMA)模型,该模型以ARMA模型为初始细水平模型(即隐多分辨模型的基本块).证明了模型的建模精度由水平问的方差决定.研究了新模型的自相关函数结构,给出了参数估计的Bayes方法和Metropolis-Hasting算法.进一步提出了一种可以直接用于不同基本块的隐多分辨模型的非线性时间序列预报方法,证明了其比其他的线性预报方法和隐多分辨模型预报方法降低了预报误差.最后通过数值模拟和实例验证了模型和预报方法,并和其他模型进行比较,结果表明新提出模型和预报方法能够更好地描述数据的特征,提高预报的精度. 展开更多
关键词 非线性时间序列预报 隐多分辨自回归滑动平均模型 自相关函数
下载PDF
基于时间序列季节分类模型的轨道交通客流短期预测 被引量:12
19
作者 唐继强 钟鑫伟 +1 位作者 刘健 李天瑞 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第7期31-38,60,共9页
轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和... 轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和季节时间序列;采用乘法季节自回归差分滑动平均模型建立客流季节分类模型;使用季节分类模型预测对应类型日期的客流。实验表明:季节分类模型既能有效预测轨道交通客流,又能较好地避免预测误差波动性问题。 展开更多
关键词 交通工程 客流短期预测 季节分类模型 时间序列 乘法季节自回归差分滑动平均模型
下载PDF
基于ARIMA-LSSVM混合模型的犯罪时间序列预测 被引量:14
20
作者 涂小萌 陈强国 《电子技术应用》 北大核心 2015年第2期160-162,166,共4页
对犯罪时间序列的预测对帮助公安部门更好地掌握犯罪动态,实现智能犯罪发现具有重大意义。针对犯罪时间序列预测的计算需求,结合真实犯罪数据集,提出了ARIMA-LSSVM混合模型。该模型通过ARIMA预测出时间序列的线性部分,通过PSO优化的LSSV... 对犯罪时间序列的预测对帮助公安部门更好地掌握犯罪动态,实现智能犯罪发现具有重大意义。针对犯罪时间序列预测的计算需求,结合真实犯罪数据集,提出了ARIMA-LSSVM混合模型。该模型通过ARIMA预测出时间序列的线性部分,通过PSO优化的LSSVM模型预测非线性部分,以对序列进行充分拟合,最后通过混合算法计算最终结果。使用此混合模型达到了精准的预测效果,证明了模型的有效性。 展开更多
关键词 犯罪时间序列 相空间重构 滑动自回归平均模型 后向传播神经网络 PSO-LSSVM
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部