[Objective] This study aimed to clone ubiquitin-conjugating enzyme gene TaUBC4 from different wheat cultivars and thus analyze their phylogenetic relationship.[Method] The UBC4 coding sequences were cloned through rev...[Objective] This study aimed to clone ubiquitin-conjugating enzyme gene TaUBC4 from different wheat cultivars and thus analyze their phylogenetic relationship.[Method] The UBC4 coding sequences were cloned through reverse transcription PCR (RT-PCR) from 21 wheat varieties.After sequencing,the UBC4 sequence in wheat cultivar Zhongguochun (GenBank accession No:M28059) was selected as the reference gene,to analyze the mutation frequency and evolutionary distance in the CDSs and corresponding amino acid sequences of the different wheat cultivars.Moreover,the phylogenetic tree based on the amino acid sequences of these TaUBC4 genes were constructed,involving the homologous sequences of TaUBC4 in eight other monocots.[Result] TaUBC4 sequence was highly conserved because the similarity in DNA sequences of the wheat varieties was over 94%,while that in amino acid sequence was over 96%.And the amino acid sequence difference only can be seen at two sites among some varieties.Phylogenetic tree constructed revealed the evolutionary relationships among these wheat varieties.[Conclusion] This study reveals the polymorphism and evolutionary characteristics in the nucleotide and amino acid sequences in different wheat varieties,which lays foundation for investigating the evolution and biological function of TaUBC4 gene.In addition,the phylogenetic tree constructed provides theoretical references for the classification of the wheat varieties with complicated background.展开更多
The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficien...The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug展开更多
Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a mu...Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a multiphase nickel iron sulfide(MPS)hybrid electrode with a hierarchical structure of iron doped NiS and Ni3S2,possessing a benchmark OER activity in alkaline media with a potential as low as 1.33 V(vs.reversible hydrogen electrode)to drive an OER current density of 10 mA cm^-2.The Fe doped NiS,combined with highly conductive disulfide phase on porous Ni foam,is believed to be responsible for the ultrahigh activity.Furthermore,density functional theory simulation reveals that partially oxidized sulfur sites in Fe doped NiS could dramatically lower the energy barrier for the rate-determining elementary reaction,thus contributing to the active oxygen evolution.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(ZR2011CQ035)Scientific and Technological Innovation Fund for the Undergraduates of Liaocheng University(F2013274)~~
文摘[Objective] This study aimed to clone ubiquitin-conjugating enzyme gene TaUBC4 from different wheat cultivars and thus analyze their phylogenetic relationship.[Method] The UBC4 coding sequences were cloned through reverse transcription PCR (RT-PCR) from 21 wheat varieties.After sequencing,the UBC4 sequence in wheat cultivar Zhongguochun (GenBank accession No:M28059) was selected as the reference gene,to analyze the mutation frequency and evolutionary distance in the CDSs and corresponding amino acid sequences of the different wheat cultivars.Moreover,the phylogenetic tree based on the amino acid sequences of these TaUBC4 genes were constructed,involving the homologous sequences of TaUBC4 in eight other monocots.[Result] TaUBC4 sequence was highly conserved because the similarity in DNA sequences of the wheat varieties was over 94%,while that in amino acid sequence was over 96%.And the amino acid sequence difference only can be seen at two sites among some varieties.Phylogenetic tree constructed revealed the evolutionary relationships among these wheat varieties.[Conclusion] This study reveals the polymorphism and evolutionary characteristics in the nucleotide and amino acid sequences in different wheat varieties,which lays foundation for investigating the evolution and biological function of TaUBC4 gene.In addition,the phylogenetic tree constructed provides theoretical references for the classification of the wheat varieties with complicated background.
基金National Basic Research Program of China (973 program, 2013CB932800)the National Natural Science Foundation of China (NSFC, 31100524 to M.Z., 31170817 for C.T., and 20972148 to L.L.)
文摘The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug
基金supported by the National Natural Science Foundation of Chinathe National Key Research and Development Project (2018YFB1502401)+4 种基金the Royal Society and Newton Fund through Newton Advanced Fellowship award (NAF\R1\191294)the Program for Changjiang Scholars and Innovative Research Team in the Universitythe Fundamental Research Funds for the Central Universitiesthe Longterm Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of Chinathe financial support from China Scholarships Council (CSC)
文摘Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a multiphase nickel iron sulfide(MPS)hybrid electrode with a hierarchical structure of iron doped NiS and Ni3S2,possessing a benchmark OER activity in alkaline media with a potential as low as 1.33 V(vs.reversible hydrogen electrode)to drive an OER current density of 10 mA cm^-2.The Fe doped NiS,combined with highly conductive disulfide phase on porous Ni foam,is believed to be responsible for the ultrahigh activity.Furthermore,density functional theory simulation reveals that partially oxidized sulfur sites in Fe doped NiS could dramatically lower the energy barrier for the rate-determining elementary reaction,thus contributing to the active oxygen evolution.
基金supported by the Portuguese Foundation for Science and Technology Fundaco para a Ciência e Tecnologia(No.SFRH/BPD/34477/2006)Financiamento Base 2010-ISFL/1/297 from FCT/MCTES/PTPortuguese Foundation for Science and Technology Fundacao para a Ciê ncia e Tecnologia(Nos.UTACMU/MAT/0005/2009,PTDC/MAT/109973/2009)
文摘The authors provide a relaxation result in BV×Lq, 1≤q<+∞ as the first step towards the analysis of thermochemical equilibria.