通过人体示教计算零力矩点(zero moment point,ZMP),并通过补偿关节角度对其矫正的方法可以解决机器人步行不稳定的问题,但仍存在算法复杂度过高等问题。本文提出一种人体示教与机器学习相结合的方法,基于支持向量回归算法建立机器人的...通过人体示教计算零力矩点(zero moment point,ZMP),并通过补偿关节角度对其矫正的方法可以解决机器人步行不稳定的问题,但仍存在算法复杂度过高等问题。本文提出一种人体示教与机器学习相结合的方法,基于支持向量回归算法建立机器人的步态平衡泛化模型,通过该模型可以实现对模型输入人体示教的关节角度和ZMP信息后直接得到经稳定性补偿的关节角度,并以此驱动机器人完成步行动作。引入鲸鱼优化算法(whale optimization algorithm,WOA)优化模型的参数以使模型得到最优的泛化效果,完善步态平衡模型的性能。WEBOTS仿真平台下,使用模型输出的补偿后的关节角度驱动NAO机器人,其动作自然、稳定且算法复杂度较低,验证了本文方法的可行性。展开更多
【目的】及时、准确地作物分类制图是农情监测的重要依据。本研究基于双向长短期记忆网络模型探究深度学习技术在时间序列遥感作物分类与早期识别中的应用潜力。【方法】本文以黄河三角洲地区为例,以哨兵2号全年可用卫星影像为数据源,...【目的】及时、准确地作物分类制图是农情监测的重要依据。本研究基于双向长短期记忆网络模型探究深度学习技术在时间序列遥感作物分类与早期识别中的应用潜力。【方法】本文以黄河三角洲地区为例,以哨兵2号全年可用卫星影像为数据源,构建年时间序列NDVI数据集;采用循环神经网络构架,搭建针对结构化时序数据的双向长短期记忆网络模型(bidirectional long short-term memory,Bi-LSTM),开展遥感作物分类,并评估模型的泛化能力;通过输入不同长度时间序列遥感数据,探究满足一定制图精度条件下的作物最早可识别时间。【结果】作物年生长时序特征对于大多数作物遥感分类识别都具有较好的区分能力,基于年时间序列NDVI数据的Bi-LSTM模型作物分类总体准确率达90.9%,Kappa系数达到0.892。通过测试不同时间序列长度对作物分类的影响发现,对大多数作物来说,其分类精度随着数据时间序列长度增加而不断提高,冬小麦、水稻等作物在生长季早期即具有较为独特的分类特征,因而利用生长季早期的时间序列影像即可获得较高的制图精度,而棉花、春玉米等作物需要完整生长序列影像才能更好地保证分类精度。【结论】卫星影像时间序列蕴含的结构化特征信息可以有效地降低特定时段的作物光谱混淆;双向循环神经网络模型能够同时考虑前向和后向的时间状态信息,可以学习作物不同阶段的光谱变化特征,在水稻、棉花、春玉米等易混淆作物的识别上表现优异;模型能够有效地把握样本总体上的变化趋势,在农作物多分类任务中表现出较好的泛化能力和鲁棒性。本研究通过集成深度学习和遥感时间序列,为及时、快速的区域作物高精度制图提供了可行的思路。展开更多
文摘通过人体示教计算零力矩点(zero moment point,ZMP),并通过补偿关节角度对其矫正的方法可以解决机器人步行不稳定的问题,但仍存在算法复杂度过高等问题。本文提出一种人体示教与机器学习相结合的方法,基于支持向量回归算法建立机器人的步态平衡泛化模型,通过该模型可以实现对模型输入人体示教的关节角度和ZMP信息后直接得到经稳定性补偿的关节角度,并以此驱动机器人完成步行动作。引入鲸鱼优化算法(whale optimization algorithm,WOA)优化模型的参数以使模型得到最优的泛化效果,完善步态平衡模型的性能。WEBOTS仿真平台下,使用模型输出的补偿后的关节角度驱动NAO机器人,其动作自然、稳定且算法复杂度较低,验证了本文方法的可行性。
基金supported by subproject of the Regional Innovation Joint Fund“Theory and methodology of reasonable personalized recommendation based on graph neural networks”(U19A2079).
文摘【目的】及时、准确地作物分类制图是农情监测的重要依据。本研究基于双向长短期记忆网络模型探究深度学习技术在时间序列遥感作物分类与早期识别中的应用潜力。【方法】本文以黄河三角洲地区为例,以哨兵2号全年可用卫星影像为数据源,构建年时间序列NDVI数据集;采用循环神经网络构架,搭建针对结构化时序数据的双向长短期记忆网络模型(bidirectional long short-term memory,Bi-LSTM),开展遥感作物分类,并评估模型的泛化能力;通过输入不同长度时间序列遥感数据,探究满足一定制图精度条件下的作物最早可识别时间。【结果】作物年生长时序特征对于大多数作物遥感分类识别都具有较好的区分能力,基于年时间序列NDVI数据的Bi-LSTM模型作物分类总体准确率达90.9%,Kappa系数达到0.892。通过测试不同时间序列长度对作物分类的影响发现,对大多数作物来说,其分类精度随着数据时间序列长度增加而不断提高,冬小麦、水稻等作物在生长季早期即具有较为独特的分类特征,因而利用生长季早期的时间序列影像即可获得较高的制图精度,而棉花、春玉米等作物需要完整生长序列影像才能更好地保证分类精度。【结论】卫星影像时间序列蕴含的结构化特征信息可以有效地降低特定时段的作物光谱混淆;双向循环神经网络模型能够同时考虑前向和后向的时间状态信息,可以学习作物不同阶段的光谱变化特征,在水稻、棉花、春玉米等易混淆作物的识别上表现优异;模型能够有效地把握样本总体上的变化趋势,在农作物多分类任务中表现出较好的泛化能力和鲁棒性。本研究通过集成深度学习和遥感时间序列,为及时、快速的区域作物高精度制图提供了可行的思路。