期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
支持K-近邻搜索的区块链泛用型数据隐私保护方法
1
作者 王胜 潘正高 董全德 《辽宁大学学报(自然科学版)》 CAS 2024年第2期147-157,共11页
随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了... 随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了支持K-近邻搜索的区块链泛用型数据隐私保护方法,采集区块链泛用型数据,利用k-prototypes算法,聚类区块链泛用型数据,并控制分类属性和数值属性.在此基础上,本文支持K-近邻搜索,建立区块链泛用型数据系统模型,确定区块链泛用型数据敏感区域,实现区块链泛用型数据隐私保护.实验结果表明,本文所提方法具有较好的区块链泛用型数据隐私保护效果,能够有效提高区块链泛用型数据隐私保护安全性,缩短区块链泛用型数据隐私保护时间. 展开更多
关键词 K-近邻搜索 区块链 泛用型数据 k-prototypes算法 数据隐私保护
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部