A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.