Two numerical simulations were performed to investigate the protective effect of the foam cladding. One simulation is based on a previous experimental study, which is a ballistic pendulum with and without a foam cladd...Two numerical simulations were performed to investigate the protective effect of the foam cladding. One simulation is based on a previous experimental study, which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading. The other model is a steel beam with and without a foam cladding under blast loading. The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE) coupling model. The first approach is relatively simple and widely used. The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid. It is found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum. However, the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding. It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.展开更多
In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the...In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.展开更多
A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with ...A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet’s direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble’s characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.展开更多
文摘Two numerical simulations were performed to investigate the protective effect of the foam cladding. One simulation is based on a previous experimental study, which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading. The other model is a steel beam with and without a foam cladding under blast loading. The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE) coupling model. The first approach is relatively simple and widely used. The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid. It is found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum. However, the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding. It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.
基金Supported by the National Natural Science Foundation of China(50776063)the Natural Science Foundation of Tianjin(11JCZDJC22500)
文摘In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.
基金the National Natural Science Foundation of China under Grant No. 50779007the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070217074)+1 种基金the Defence Advance Research Program of Science and Technology of Ship Industry under Grant No. 07J1.1.6Harbin Engineering University Foundation under Grant No. HEUFT07069
文摘A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet’s direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble’s characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.