In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The ...In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability.The thermal performance of CPCM is significantly improved.The efficiency of temperature control can be obviously improved by adding metal foam in phase change material.CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin.An approximate plateau appears.The plateau can be considered as the temperature control zone of CPCM.Heat can be transferred fiom hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability.Natural convection promotes the melting of solid-liquid phase change material.Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material.The interior temperature difference decreases and the whole temperature becomes more uniform.For the same porosity with a metal foam,melting time of solid-liquid phase change material decreases.Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller.The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces.The research results can be used to guide fabricating the CPCM.展开更多
To ensure efficient operation of metallurgical gas-liquid reactors, the gas bubbles must be uniformly distributed. For high temperature metallurgical reactors, it is impractical and unsafe to carry out visual observat...To ensure efficient operation of metallurgical gas-liquid reactors, the gas bubbles must be uniformly distributed. For high temperature metallurgical reactors, it is impractical and unsafe to carry out visual observations. An air-water model was used to study the relationship between the bubble flow patterns and the pressure fluctuation signals. The fluctuation signals captured in the time domain were transformed into the frequency domain. Various parameters obtained from the transformed data were analysed for their suitability for delineating the bubble flow patterns observed. These parameters and the flow patterns were found to be well-correlated using the gas flow number.展开更多
基金Support provided by National Basic Research Program of China(Grant No.2012CB933200)National Natural Science Foundation of China(Grant No:51161140332,Grant No.51476172)
文摘In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability.The thermal performance of CPCM is significantly improved.The efficiency of temperature control can be obviously improved by adding metal foam in phase change material.CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin.An approximate plateau appears.The plateau can be considered as the temperature control zone of CPCM.Heat can be transferred fiom hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability.Natural convection promotes the melting of solid-liquid phase change material.Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material.The interior temperature difference decreases and the whole temperature becomes more uniform.For the same porosity with a metal foam,melting time of solid-liquid phase change material decreases.Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller.The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces.The research results can be used to guide fabricating the CPCM.
文摘To ensure efficient operation of metallurgical gas-liquid reactors, the gas bubbles must be uniformly distributed. For high temperature metallurgical reactors, it is impractical and unsafe to carry out visual observations. An air-water model was used to study the relationship between the bubble flow patterns and the pressure fluctuation signals. The fluctuation signals captured in the time domain were transformed into the frequency domain. Various parameters obtained from the transformed data were analysed for their suitability for delineating the bubble flow patterns observed. These parameters and the flow patterns were found to be well-correlated using the gas flow number.