泡沫最佳体系为:0.5%的ZY起泡剂(石油磺酸盐)+空气,气液体积比1.2:1。此时的起泡体积400 m L,泡沫半衰期540 s,泡沫视黏度1210 m Pa·s。根据达西定律及质量守恒定律,推导出空气泡沫体系在孔隙介质中渗流时不同测压点的有效黏度μx...泡沫最佳体系为:0.5%的ZY起泡剂(石油磺酸盐)+空气,气液体积比1.2:1。此时的起泡体积400 m L,泡沫半衰期540 s,泡沫视黏度1210 m Pa·s。根据达西定律及质量守恒定律,推导出空气泡沫体系在孔隙介质中渗流时不同测压点的有效黏度μx数学表达式;并根据岩心孔喉直径及泡沫渗流线速度得到泡沫渗流时的剪切速率γ;拟合得到泡沫驱油体系在孔隙介质中渗流时的μx与γ的关系式为μx=Kγn-1,稠度系数K为375.94,幂律指数n为0.33。展开更多
A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or exc...A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.展开更多
文摘泡沫最佳体系为:0.5%的ZY起泡剂(石油磺酸盐)+空气,气液体积比1.2:1。此时的起泡体积400 m L,泡沫半衰期540 s,泡沫视黏度1210 m Pa·s。根据达西定律及质量守恒定律,推导出空气泡沫体系在孔隙介质中渗流时不同测压点的有效黏度μx数学表达式;并根据岩心孔喉直径及泡沫渗流线速度得到泡沫渗流时的剪切速率γ;拟合得到泡沫驱油体系在孔隙介质中渗流时的μx与γ的关系式为μx=Kγn-1,稠度系数K为375.94,幂律指数n为0.33。
基金Project (51074185) supported by the National Natural Science Foundation of ChinaProjects (CX2009B037, CX2010B120) supported by Doctor Innovative Program of Hunan Province, China
文摘A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.