From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that ...From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.展开更多
The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first tr...The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.展开更多
Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing...Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.展开更多
A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is ...A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.展开更多
Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm eff...Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this dimculty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R →0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by p(t), i.e., C 〉 0, C = 0, and C 〈0. Following the C's values the spectrum of quantum states is discrete (C 〉 0) or continuous (C ≤ 0).展开更多
The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich e...The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.展开更多
In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ...In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.展开更多
We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of...We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of the equation is instantaneous "occasionally"). The obtained rigorous instantaneous formulation, in fact, is expressed as an operator sandwiched by two "reduced BS wave functions" properly, while the reduced BS wave functions appearing in the formulation are the rigorous solutions of the instantaneous BS equation, and they may relate to Schroedinger wave functions straightforwardly. We also show that the rigorous instantaneous formulation is gauge-invariant with respect to the Uem(1) transformation precisely, if the concerned transitions are radiative. Some applications of the formulation are outlined.展开更多
To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the tim...To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the time-independent one first and then an exact wave function can be found.展开更多
We take the (μ^±e^-+) system as an example, but restrict ourselves to highlight the states with quantum number J^P = 0^-, to explore the different contents of the instantaneous Bethe-Salpeter (BS) equation ...We take the (μ^±e^-+) system as an example, but restrict ourselves to highlight the states with quantum number J^P = 0^-, to explore the different contents of the instantaneous Bethe-Salpeter (BS) equation and its analog, the relativistic version of Breit equation, by solving them exactly. The results show that the two equations are not equivalent, although they are analogous. Furthermore, since the Breit equation contains extra un-physical solutions, so we point out that it should be abandoned if one wishes to have an accurate description of the bound states for the instantaneous interacting binding systems.展开更多
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ...We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.展开更多
A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the ...A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.展开更多
As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
By the application of the extended tanh method and the symbolic computation system Mathematica, new soliton-like solutions are obtained for the combined KdV and mKdV (KdV-mKdV) equation.
The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solut...Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
文摘From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.
基金National Natural Science Foundation (K19972 0 11)
文摘The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.
文摘Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.
基金Supported by the National Natural Science Foundation of China under Grant No 10374119, and the 0ne-Hundred-Talents Project of Chinese Academy of Science. ACKN0WLEDGMENTS: We gratefully acknowledge Professors Ding Peizhu and Liu Xueshen for their hospitality and help with the symplectic al- gorithm.
文摘A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.
文摘Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this dimculty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R →0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by p(t), i.e., C 〉 0, C = 0, and C 〈0. Following the C's values the spectrum of quantum states is discrete (C 〉 0) or continuous (C ≤ 0).
文摘The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1412800 the Innovation Program of Shanghai Municipal Education Commission under Grant No.10ZZ131
文摘In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.
基金The project supported in part by National Natural Science Foundation of China
文摘We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of the equation is instantaneous "occasionally"). The obtained rigorous instantaneous formulation, in fact, is expressed as an operator sandwiched by two "reduced BS wave functions" properly, while the reduced BS wave functions appearing in the formulation are the rigorous solutions of the instantaneous BS equation, and they may relate to Schroedinger wave functions straightforwardly. We also show that the rigorous instantaneous formulation is gauge-invariant with respect to the Uem(1) transformation precisely, if the concerned transitions are radiative. Some applications of the formulation are outlined.
文摘To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the time-independent one first and then an exact wave function can be found.
文摘We take the (μ^±e^-+) system as an example, but restrict ourselves to highlight the states with quantum number J^P = 0^-, to explore the different contents of the instantaneous Bethe-Salpeter (BS) equation and its analog, the relativistic version of Breit equation, by solving them exactly. The results show that the two equations are not equivalent, although they are analogous. Furthermore, since the Breit equation contains extra un-physical solutions, so we point out that it should be abandoned if one wishes to have an accurate description of the bound states for the instantaneous interacting binding systems.
基金河南省自然科学基金,河南省教育厅自然科学基金,the Science Foundation of Henan University of Science and Technology
文摘We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.
文摘A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
文摘As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
文摘By the application of the extended tanh method and the symbolic computation system Mathematica, new soliton-like solutions are obtained for the combined KdV and mKdV (KdV-mKdV) equation.
文摘The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.
文摘Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.