Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by whi...Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.展开更多
Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time mi...Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time migration(PKTM) velocity model and are thus difficult to independently determine.We extended the simplified two-parameter(stacking velocity V_(C2) and anisotropic parameter k_(eff)) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter(stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter k_(eff)) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified twoparameter moveout equation.In the proposed method,first,the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters;then,the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration.The vertical velocity ratio γ_0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration.The initial effective velocity ratio γ_(eff) is calculated using the Thomsen(1999) equation in combination with the P-wave velocity analysis;ultimately,the final velocity model of the effective velocity ratio γ_(eff) is obtained by percentage scanning migration.This method simplifies the PS-wave parameter estimation in high-quality imaging,reduces the uncertainty of multiparameter estimations,and obtains good imaging results in practice.展开更多
Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation...Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave- front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius.展开更多
文摘Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.
基金supported by the Important National Science&Technology Specific Projects(No.2011ZX05019-003)the New Method and Technology Research Project of Geophysical Exploration of CNPC(No.2014A-3612)
文摘Stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter x_(eff) are correlated in the PS-converted-wave(PS-wave) anisotropic prestack Kirchhoff time migration(PKTM) velocity model and are thus difficult to independently determine.We extended the simplified two-parameter(stacking velocity V_(C2) and anisotropic parameter k_(eff)) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter(stacking velocity V_(C2),vertical velocity ratio γ_0,effective velocity ratio γ_(eff),and anisotropic parameter k_(eff)) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified twoparameter moveout equation.In the proposed method,first,the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters;then,the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration.The vertical velocity ratio γ_0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration.The initial effective velocity ratio γ_(eff) is calculated using the Thomsen(1999) equation in combination with the P-wave velocity analysis;ultimately,the final velocity model of the effective velocity ratio γ_(eff) is obtained by percentage scanning migration.This method simplifies the PS-wave parameter estimation in high-quality imaging,reduces the uncertainty of multiparameter estimations,and obtains good imaging results in practice.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10562001 and 10765002
文摘Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave- front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius.