To analyze the response of the wall pressure fluctuation in an isolator when the shock train is subjected to a periodic motion at a low frequency,the isolator experiment is conducted in a blow-down supersonic wind tun...To analyze the response of the wall pressure fluctuation in an isolator when the shock train is subjected to a periodic motion at a low frequency,the isolator experiment is conducted in a blow-down supersonic wind tunnel at free stream Mach number of 1.98 under asymmetric incoming flow.Experimental results show that:The isolator effectively isolates the periodic back pressure fluctuation from affecting upstream undisturbed flow;The wall pressure fluctuations are due to the propagation of wave fronts with the second acoustic mode,but they are subjected to an oscillating shock train in the most part of the shock oscillation region;The attenuation of wall pressure fluctuations on the lower wall with thick boundary layer accords with the exponential law,but it fluctuates on the upper wall with thin boundary layer in the shock oscillation region.展开更多
A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the ...A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the method include pressure field, pressure drag, wave resistance, vertical force, trim moment and wave pattern. Comparisons are made with model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO Joubert submarine hull. It is found that the Havelock source panel method is capable of determining with reasonable accuracy wave resistance, vertical force and trim moment for submarine hulls. Further experimental data are required in order to assess the accuracy of the method for pressure field and wave pattern prediction. The method is implemented in the computer code“HullWave”and offers potential advantages over RANS-CFD codes in terms of speed, simplicity and robustness.展开更多
The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When th...The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When the stochastic stress waves transmit through rocks, the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods. The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods. The results show the harder the rock, the less absorption of energy, the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock. When the whole stress energy doubles either by doubling the duration time or by increasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to the whole stress energy (i.e. energy dissipation ratio) is decreased to 10%-15%. When doubling the duration time, the cutoff frequency to fracture rock remains constant. However, with the increase of the amplitude of stress wave, the cutoff frequency increases accordingly.展开更多
The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is...The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.展开更多
A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in...A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.展开更多
In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulati...In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid’s wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.展开更多
A new two dimensional coupled electromechanical model for a thick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order ...A new two dimensional coupled electromechanical model for a thick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order shear deformation theory for the relatively thick elastic core and linear piezoelectric theory for the piezoelectric lamina. The actuation response is induced through the application of external electric voltage. Rayleigh-Ritz method is adopted to model the displacement and potential fields of the beam and governing equations were finally derived from the variational energy principle. The model allows the piezoelectric lamina to be formulated via a two-dimensional model because of the strong electro-mechanical coupling and the presence of a two-dimensional electric field. Numerical examples of piezoelectric laminated beam are presented. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate.展开更多
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressu...The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.展开更多
The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fou...The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.展开更多
We investigated the dynamics of the simple spiral waves of the Se/kov reaction-diffusion system with the Lattice Boltzmann method. The results of computer simulation lead to the conclusion that the trajectory of the s...We investigated the dynamics of the simple spiral waves of the Se/kov reaction-diffusion system with the Lattice Boltzmann method. The results of computer simulation lead to the conclusion that the trajectory of the spiral tip is a small circle, the wavelength and the period decay exponentially when the value of parameter b increases; and the relation between the wavelength and the period is λ ∝ T1/2, which is qualitatively the same as that obtained by Ou-Yang Qi from Belousov-Zhabotinsky reaction system.展开更多
The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of mu...The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of muds tone, sands tone and limestone specimens during complete stress-strain process and their mechanic property were investigated. A new type of device for the observation of surrounding rock stability-borehole ultrasonic device with completely dry coupling was developed to get better coupling and more accurate measurement data comparing with those of water coupling situation. Preliminary study on the application of ultrasonic measurement technique at belt conveyor roadway of north wing in Baodian Coal Mine (Shandong province) was conducted. Based on the interrelations between the complete stress-strain properties of specimens and their wave properties, the structural properties of surrounding rocks, the range of yield zones, and the change of stresses within surrounding rocks when a longwall face was across over the roadway were analyzed.Therefore,a new and feasible way was found for the research on the deformation law of surrounding rock of roadway and rational selection of support parameters.展开更多
This Pendulor, wave power converter, was invented to be robust towards storms. The key is Hybrid H.S.T. for generator driving by a higher the speed and a smaller the torque of the piston pump which can do over 360 deg...This Pendulor, wave power converter, was invented to be robust towards storms. The key is Hybrid H.S.T. for generator driving by a higher the speed and a smaller the torque of the piston pump which can do over 360 degrees rotation free of the pendulum motion. This idea will bring the non-shock operation to the moving body type wave power conversion and when the Pendulor applies with the antenna principle, it will have a possibility to convert safe and cheap electricity from the ocean by this technology.展开更多
Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion...Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms.展开更多
It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely ...It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely time-consuming and very costly. This work investigates the use of pulse-echo ultrasound to detect internal damages in wind turbine blades without the necessity to ship the blades off-site. A prototype 2D ultrasonic NDT (non-destructive testing) system has been developed and optimised for in-situ wind turbine blade inspection. The system is designed to be light weight so it can be easily carried by an inspector onto the wind turbine blade for in-situ inspection. It can be operated in 1D A-scan, 2D C-scan or 3D volume scan. A software system has been developed to control the automated scanning and show the damage areas in a 2D/3D map with different colours so that the inspector can easily identify the defective areas. Experiments on GFRP (glass fibre reinforced plastics) and wind turbine blades (made of GFRP) samples showed that internal defects can be detected. The main advantages of this system are fully automated 2D spatial scanning and the ability to alert the user to the damage of the inspected sample. It is intended to be used for in-situ inspection to save maintenance time and hence considered to be economically beneficial for the wind energy industry.展开更多
The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transiti...The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transitions of C1^Пu,B^3Пou^+, A^3П1u←X^1∑g+ and their total energy absorption spectrum are derived, and the quantum yield of (Br+Br6*) channel are determined correspondingly. The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation. The results indicate that the influence of nonadiabatic mechanism, which may be caused by the electronic-vibrational interplay between the 13 and C states, is negligibly small for the (Br+Br^*) channel. From the Landau-Zener modeling of the observed product recoil parameter β(Br+Br), the best-fit value of the coupling matrix elenment or coupling strength between the diabatic B and C state potentials is obtained.展开更多
Based on seismic wave records of the Chengdu digital seismic network and Zipingpu reservoir digital seismic network from August 16,2004 to May 12,2008 when the Wenchuan MS8.0 earthquake occurred,the parameters of foca...Based on seismic wave records of the Chengdu digital seismic network and Zipingpu reservoir digital seismic network from August 16,2004 to May 12,2008 when the Wenchuan MS8.0 earthquake occurred,the parameters of focal mechanisms of 486 earthquakes with magnitude larger than M1.6 in the Zipingpu reservoir area were calculated using amplitude ratio method,meanwhile the temporal-spatial variation characteristics of mechanisms and stress field were analyzed based on these parameters.Results show a low ratio of thrust earthquakes and an increased number of strike-slip earthquakes in the reservoir water area in the period from 2006 to 2008.While in the areas far from the reservoir waterfront,the thrust earthquakes took up a high proportion and the strike-slip ones did not increase.The direction of mean principal compressive stress field was deflected and disturbed differently in each area before the Wenchuan MS8.0 earthquake.展开更多
Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance sc...Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.展开更多
To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorith...To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.展开更多
This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a...This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a mechanical ideal mass damper spring system. A new model is then presented and the parameters of this model are determined by the use of an experimental setup (shock tube test bench). With this model, a transfer function is defined in order to link directly the pressure and the air mass flow rate. In the second part, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. This last one is driven by an electric motor in order to study only the effect of the pressure waves on the engine behavior. A good agreement is obtained between the experimental results and the numerical ones and the new approach is an alternative method for modeling the pressure wave phenomena in an internal combustion engine manifold.展开更多
基金Supported by the National Natural Science Foundation of China(10572059)~~
文摘To analyze the response of the wall pressure fluctuation in an isolator when the shock train is subjected to a periodic motion at a low frequency,the isolator experiment is conducted in a blow-down supersonic wind tunnel at free stream Mach number of 1.98 under asymmetric incoming flow.Experimental results show that:The isolator effectively isolates the periodic back pressure fluctuation from affecting upstream undisturbed flow;The wall pressure fluctuations are due to the propagation of wave fronts with the second acoustic mode,but they are subjected to an oscillating shock train in the most part of the shock oscillation region;The attenuation of wall pressure fluctuations on the lower wall with thick boundary layer accords with the exponential law,but it fluctuates on the upper wall with thin boundary layer in the shock oscillation region.
文摘A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the method include pressure field, pressure drag, wave resistance, vertical force, trim moment and wave pattern. Comparisons are made with model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO Joubert submarine hull. It is found that the Havelock source panel method is capable of determining with reasonable accuracy wave resistance, vertical force and trim moment for submarine hulls. Further experimental data are required in order to assess the accuracy of the method for pressure field and wave pattern prediction. The method is implemented in the computer code“HullWave”and offers potential advantages over RANS-CFD codes in terms of speed, simplicity and robustness.
基金Projects(50404010, 50574098) supported by the National Natural Science Foundation of Chinaproject(05jj10010) supported by the Hunan Provincial Natural Science Foundation of Distinguished Young Scholars
文摘The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When the stochastic stress waves transmit through rocks, the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods. The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods. The results show the harder the rock, the less absorption of energy, the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock. When the whole stress energy doubles either by doubling the duration time or by increasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to the whole stress energy (i.e. energy dissipation ratio) is decreased to 10%-15%. When doubling the duration time, the cutoff frequency to fracture rock remains constant. However, with the increase of the amplitude of stress wave, the cutoff frequency increases accordingly.
基金supported by the High Technology Research and Development Program of China (863 Program, Grant Nos SQ2009AA09Z3487852 and 2007AA09Z313)
文摘The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.
基金Supported by the National Natural Science Foundation of China (Grant No.51079034) Fundamental Research Funds for the Central Universities (Grant No. HEUCFRI003).
文摘A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.
基金Project(200310) supported by Edison Research Foundation from General Electric (GE) in USAProject(59976022) supported by the National Natural Science Foundation of China
文摘In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid’s wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.
基金Project (No. 7001687 (BC)) supported by City University of HongKong, China
文摘A new two dimensional coupled electromechanical model for a thick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order shear deformation theory for the relatively thick elastic core and linear piezoelectric theory for the piezoelectric lamina. The actuation response is induced through the application of external electric voltage. Rayleigh-Ritz method is adopted to model the displacement and potential fields of the beam and governing equations were finally derived from the variational energy principle. The model allows the piezoelectric lamina to be formulated via a two-dimensional model because of the strong electro-mechanical coupling and the presence of a two-dimensional electric field. Numerical examples of piezoelectric laminated beam are presented. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate.
基金the National Natural Science Foundation of China (NSFC) (50909024)Science Fund of State Key Laboratory of Automotive Safety and Energy (KF10102)+1 种基金Basic Research Foundation of Harbin Engineering University(HEUFT09004)The Cooperation Project in Industry,Education and Research of Ministry of Education of Guangdong Province(2009A090100050)
文摘The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
文摘The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10347001, 10562001, and 70371067, the Natural Science Foundation of Guangxi Province of China under Grant Nos. 04470307 and 0542045, and the Special Fund for the New Century Trained Talents Program of Guangxi of China under Grant No. 20011204
文摘We investigated the dynamics of the simple spiral waves of the Se/kov reaction-diffusion system with the Lattice Boltzmann method. The results of computer simulation lead to the conclusion that the trajectory of the spiral tip is a small circle, the wavelength and the period decay exponentially when the value of parameter b increases; and the relation between the wavelength and the period is λ ∝ T1/2, which is qualitatively the same as that obtained by Ou-Yang Qi from Belousov-Zhabotinsky reaction system.
基金This project is supported by returned specialists fund of China National Coal Corporation
文摘The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of muds tone, sands tone and limestone specimens during complete stress-strain process and their mechanic property were investigated. A new type of device for the observation of surrounding rock stability-borehole ultrasonic device with completely dry coupling was developed to get better coupling and more accurate measurement data comparing with those of water coupling situation. Preliminary study on the application of ultrasonic measurement technique at belt conveyor roadway of north wing in Baodian Coal Mine (Shandong province) was conducted. Based on the interrelations between the complete stress-strain properties of specimens and their wave properties, the structural properties of surrounding rocks, the range of yield zones, and the change of stresses within surrounding rocks when a longwall face was across over the roadway were analyzed.Therefore,a new and feasible way was found for the research on the deformation law of surrounding rock of roadway and rational selection of support parameters.
文摘This Pendulor, wave power converter, was invented to be robust towards storms. The key is Hybrid H.S.T. for generator driving by a higher the speed and a smaller the torque of the piston pump which can do over 360 degrees rotation free of the pendulum motion. This idea will bring the non-shock operation to the moving body type wave power conversion and when the Pendulor applies with the antenna principle, it will have a possibility to convert safe and cheap electricity from the ocean by this technology.
基金funded by the Joint Earthquake Science Foundation of China Earthquake Administration(Grant No.C08034)
文摘Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms.
文摘It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely time-consuming and very costly. This work investigates the use of pulse-echo ultrasound to detect internal damages in wind turbine blades without the necessity to ship the blades off-site. A prototype 2D ultrasonic NDT (non-destructive testing) system has been developed and optimised for in-situ wind turbine blade inspection. The system is designed to be light weight so it can be easily carried by an inspector onto the wind turbine blade for in-situ inspection. It can be operated in 1D A-scan, 2D C-scan or 3D volume scan. A software system has been developed to control the automated scanning and show the damage areas in a 2D/3D map with different colours so that the inspector can easily identify the defective areas. Experiments on GFRP (glass fibre reinforced plastics) and wind turbine blades (made of GFRP) samples showed that internal defects can be detected. The main advantages of this system are fully automated 2D spatial scanning and the ability to alert the user to the damage of the inspected sample. It is intended to be used for in-situ inspection to save maintenance time and hence considered to be economically beneficial for the wind energy industry.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10534010 and No.20673140).
文摘The photodissociation of Br2 was investigated within the near-visible UV absorption band. Based on the potential curves for the ground and low-lying excited states, the optical cross-sections for the discrete transitions of C1^Пu,B^3Пou^+, A^3П1u←X^1∑g+ and their total energy absorption spectrum are derived, and the quantum yield of (Br+Br6*) channel are determined correspondingly. The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation. The results indicate that the influence of nonadiabatic mechanism, which may be caused by the electronic-vibrational interplay between the 13 and C states, is negligibly small for the (Br+Br^*) channel. From the Landau-Zener modeling of the observed product recoil parameter β(Br+Br), the best-fit value of the coupling matrix elenment or coupling strength between the diabatic B and C state potentials is obtained.
基金sponsored by the National Key Technology R&D Program on Reservoir Earthquake Monitoring and Prediction Technique(2008BAC38B03-0202),China
文摘Based on seismic wave records of the Chengdu digital seismic network and Zipingpu reservoir digital seismic network from August 16,2004 to May 12,2008 when the Wenchuan MS8.0 earthquake occurred,the parameters of focal mechanisms of 486 earthquakes with magnitude larger than M1.6 in the Zipingpu reservoir area were calculated using amplitude ratio method,meanwhile the temporal-spatial variation characteristics of mechanisms and stress field were analyzed based on these parameters.Results show a low ratio of thrust earthquakes and an increased number of strike-slip earthquakes in the reservoir water area in the period from 2006 to 2008.While in the areas far from the reservoir waterfront,the thrust earthquakes took up a high proportion and the strike-slip ones did not increase.The direction of mean principal compressive stress field was deflected and disturbed differently in each area before the Wenchuan MS8.0 earthquake.
基金supported by the National Natural Science Foundation of China(No.60572050)the National High Technology Research and Development Programme of China(No.2008AA01Z211)
文摘Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.
文摘To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.
文摘This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a mechanical ideal mass damper spring system. A new model is then presented and the parameters of this model are determined by the use of an experimental setup (shock tube test bench). With this model, a transfer function is defined in order to link directly the pressure and the air mass flow rate. In the second part, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. This last one is driven by an electric motor in order to study only the effect of the pressure waves on the engine behavior. A good agreement is obtained between the experimental results and the numerical ones and the new approach is an alternative method for modeling the pressure wave phenomena in an internal combustion engine manifold.