For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the metho...For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems.Ten exact explicit parametric representations of the traveling wave solutions are given.展开更多
A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field th...A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field that comprise the total field of a wave in the ocean, considering that the total field and the incident field satisfy the Helmholtz equations and the scattered field conforms to the Sommerfield radiation condition. Two examples for the calculation of refractive index and inverse refractive index respectively of the mesoscale eddy and the internal wave demonstrate the applicability of the algorithm.展开更多
Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification ...Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification by microwave irradiation were analyzed based on the measurement of reaction products. Thermodynamic parameters for desulfurization and denitrification by thermal-carbon reduction were predicted according to the principles of thermodynamics. The experimental results indicated that the desulfurization and denitrification reaction processes include three reaction stages: slow reaction zone, transitional zone and rapid reaction zone. In high temperature zone, activation energies for the reduction of SO2 and nitrogen monoxide (NO) are 30.69 and 24.06 kJ mo1-1, respectively. This study shows that microwave can effectively enhance the removal of pollutants through its heating effect and the induced catalysis.展开更多
基金Supported by the Natural Science Foundation of Ningbo under Grant No. 2008A610029
文摘For the(2+1)-Dimensional HNLS equation,what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems.Ten exact explicit parametric representations of the traveling wave solutions are given.
文摘A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field that comprise the total field of a wave in the ocean, considering that the total field and the incident field satisfy the Helmholtz equations and the scattered field conforms to the Sommerfield radiation condition. Two examples for the calculation of refractive index and inverse refractive index respectively of the mesoscale eddy and the internal wave demonstrate the applicability of the algorithm.
基金supported by the National Natural Science Foundation of China (Grant No. 50976035)
文摘Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification by microwave irradiation were analyzed based on the measurement of reaction products. Thermodynamic parameters for desulfurization and denitrification by thermal-carbon reduction were predicted according to the principles of thermodynamics. The experimental results indicated that the desulfurization and denitrification reaction processes include three reaction stages: slow reaction zone, transitional zone and rapid reaction zone. In high temperature zone, activation energies for the reduction of SO2 and nitrogen monoxide (NO) are 30.69 and 24.06 kJ mo1-1, respectively. This study shows that microwave can effectively enhance the removal of pollutants through its heating effect and the induced catalysis.