The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite the...The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite these low nutrient concentrations, the fynbos is home to 9,030 vascular plant species with 68.7% endemicity. How native plant species survive such low levels of available P is intriguing, and indeed the subject of this review. In the fynbos soils, P is easily precipitated with cations such as Fe and Al, forming AI-P and Fe-P in acidic soils, or Ca-P in neutral-to-alkaline soils. The mechanisms for promoting P availability and enhancing P nutrition include the development of mycorrhizal symbiosis (with 80%-90% of higher plants, e.g., Cyclopia, Aspalathus, Psoralea and Leucadendron etc.) which exhibits 3-5 times much greater P acquisition than non-mycorrhizal roots. Formation of cluster roots by the Leguminosae (Fabaceae) and their exudation of Kreb cycle intermediates (organic acids) for solubilizing P, secretion of root exudate compounds (organic acids, phenolics, amino acids, etc.) that mobilize P. The synthesis and release of acid and alkaline phosphatase enzyme that catalyze the cleavage of mineral P from organic phosphate esters in acidic and alkaline soils, and the development of deep tap roots as well as massive secondary roots within the uppermost 15 cm of soil for capturing water and nutrients. Some fynbos legumes employ all these adaptive mechanisms for enhancing P nutrition and plant growth. Aspalathus and Cyclopia species typically form mycorrhizal and rhizobial symbiosis for improving P and N nutrition, produce cluster roots and acid phosphatases for increasing P supply, and release root exudates that enhance P solubilisation and uptake.展开更多
Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate...Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate ceramics. The four ceramics were attached to outer surfaces of the octagon elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90° phase difference voltages were applied to the ceramics on vertical surfaces. When the AC voltage with 90° phase difference was applied in ceramics, the elliptical displacement of unimorph bars was generated by generating bending vibration. To find the maximum displacement model that generates elliptical displacement at the centers of the inner surfaces, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As a result, the speed and torque are increased linearly by increasing the input voltage and the speed of motors can be controlled by changing the applied voltages.展开更多
文摘The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite these low nutrient concentrations, the fynbos is home to 9,030 vascular plant species with 68.7% endemicity. How native plant species survive such low levels of available P is intriguing, and indeed the subject of this review. In the fynbos soils, P is easily precipitated with cations such as Fe and Al, forming AI-P and Fe-P in acidic soils, or Ca-P in neutral-to-alkaline soils. The mechanisms for promoting P availability and enhancing P nutrition include the development of mycorrhizal symbiosis (with 80%-90% of higher plants, e.g., Cyclopia, Aspalathus, Psoralea and Leucadendron etc.) which exhibits 3-5 times much greater P acquisition than non-mycorrhizal roots. Formation of cluster roots by the Leguminosae (Fabaceae) and their exudation of Kreb cycle intermediates (organic acids) for solubilizing P, secretion of root exudate compounds (organic acids, phenolics, amino acids, etc.) that mobilize P. The synthesis and release of acid and alkaline phosphatase enzyme that catalyze the cleavage of mineral P from organic phosphate esters in acidic and alkaline soils, and the development of deep tap roots as well as massive secondary roots within the uppermost 15 cm of soil for capturing water and nutrients. Some fynbos legumes employ all these adaptive mechanisms for enhancing P nutrition and plant growth. Aspalathus and Cyclopia species typically form mycorrhizal and rhizobial symbiosis for improving P and N nutrition, produce cluster roots and acid phosphatases for increasing P supply, and release root exudates that enhance P solubilisation and uptake.
基金Project supported by the Second Stage of Brain Korea 21 Projectssupported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) [No.2011-0030806]
文摘Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate ceramics. The four ceramics were attached to outer surfaces of the octagon elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90° phase difference voltages were applied to the ceramics on vertical surfaces. When the AC voltage with 90° phase difference was applied in ceramics, the elliptical displacement of unimorph bars was generated by generating bending vibration. To find the maximum displacement model that generates elliptical displacement at the centers of the inner surfaces, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As a result, the speed and torque are increased linearly by increasing the input voltage and the speed of motors can be controlled by changing the applied voltages.