The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified...The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified dispersive water-wave (MDWW) system are obtained. Based on a derived periodic solitary wave solution and a rational solution, we study a type of phenomenon of complex wave.展开更多
By introducing the Lucas-Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional modified dispersive water-wave system....By introducing the Lucas-Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional modified dispersive water-wave system. The main idea of this method is to express the solutions of this system as polynomials in the solution of the Riecati equation that the symmetrical Lucas functions satisfy. From the variable separation sohition and by selecting appropriate functions, some novel Jacobian elliptic wave structure with variable modulus and their interactions with dromions and peakons are investigated.展开更多
基金Supported by Science and Technology Foundation of Guizhou Province under Grant No.20072009
文摘The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified dispersive water-wave (MDWW) system are obtained. Based on a derived periodic solitary wave solution and a rational solution, we study a type of phenomenon of complex wave.
文摘By introducing the Lucas-Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional modified dispersive water-wave system. The main idea of this method is to express the solutions of this system as polynomials in the solution of the Riecati equation that the symmetrical Lucas functions satisfy. From the variable separation sohition and by selecting appropriate functions, some novel Jacobian elliptic wave structure with variable modulus and their interactions with dromions and peakons are investigated.