期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
动脉压力波形分析在麻醉诱导期的应用
1
作者 钟子佩 程云章 +1 位作者 曹阳 梁冰 《中国医学物理学杂志》 CSCD 2022年第3期364-370,共7页
为探索动脉波形分析方法的临床意义,使用波形分离法与储存压力波模型对采集到的25例进行全麻手术的高龄患者的动脉压力波形进行波形分析,在获得P_(f)、P_(b)以及P_(e)、P_(r)等波形形态参数后,将诱导前后的参数变化量与临床生命指标变... 为探索动脉波形分析方法的临床意义,使用波形分离法与储存压力波模型对采集到的25例进行全麻手术的高龄患者的动脉压力波形进行波形分析,在获得P_(f)、P_(b)以及P_(e)、P_(r)等波形形态参数后,将诱导前后的参数变化量与临床生命指标变化量进行相关性分析。在本文的研究群体中,波形分离法与储存压力波模型的参数均与诱导中的血压和心率变化量有相关性,其中△P_(e)与临床指标△PP相关系数最高(r=0.926)。从生理病理学的角度对波形参数的变化进行解读,旨在探索波形分析在诱导期对全麻患者麻醉水平的应用价值,可为动脉压力波形分析及其应用提供新的理论基础和技术方案。 展开更多
关键词 全身麻醉 诱导 波形分析 波形分离法 储存压力波模型
下载PDF
Complex Wave Solutions for (2+1)-Dimensional Modified Dispersive Water Wave System 被引量:1
2
作者 LIANG Jin-Fu GONG Lun-Xun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第7期17-22,共6页
The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified... The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified dispersive water-wave (MDWW) system are obtained. Based on a derived periodic solitary wave solution and a rational solution, we study a type of phenomenon of complex wave. 展开更多
关键词 MDWW system generalized Riccati equation variable separation method complex wave
下载PDF
Quasi-Periodic Structures Based on Symmetrical Lucas Function of (2+1)-Dimensional Modified Dispersive Water-Wave System
3
作者 Emad A-B.ABDEL-SALAM 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期1004-1012,共9页
By introducing the Lucas-Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional modified dispersive water-wave system.... By introducing the Lucas-Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional modified dispersive water-wave system. The main idea of this method is to express the solutions of this system as polynomials in the solution of the Riecati equation that the symmetrical Lucas functions satisfy. From the variable separation sohition and by selecting appropriate functions, some novel Jacobian elliptic wave structure with variable modulus and their interactions with dromions and peakons are investigated. 展开更多
关键词 Lucas functions quasi-periodic structure variable separation excitations modified dispersive water-wave system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部