Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the m...Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.展开更多
A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) F...A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important param- eters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the opti- mized structure is 0.258 dB.展开更多
The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electro...The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electromagnetic(EM)wave absorption for the first time.High-permittivity Sb_(2)S_(3) singlecrystal nanorods were prepared successfully and exhibited excellent performance,with a low reflection loss of -65.9 dB(13.0 GHz,3.8 mm)and an ultra-wide effective absorption bandwidth of 9.5 GHz(8.5-18.0 GHz,4.1 mm).After excluding the general absorption mechanisms,including conductive losses,interfacial polarization,and dipole polarization,the distinctive single-crystal volume polarization affected by shape anisotropy was proposed.This work not only meets the challenge of a single-component dielectric material design but also introduces a new concept for construction of efficient dielectric EM wave absorption material.展开更多
Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated....Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated. The reflect loss was less than -20 dB for all of the composites in different frequency ranges. The cube-like and walnut-like Fe3O4 composites exhibit improved complex permittivity and permeability and dual-frequency and wide bandwidth absorption characteristics, which is mainly attributed to the larger shape anisotropy. Such a high absorption property indicates that these porous Fe3O4 particles with various morphologies are very promising for electromagnetic wave absorptive materials.展开更多
文摘Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.
基金the foundation for Advance ResearchProgram of Weapon Equipment, China (Grant No.02040105DZ02).
文摘A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important param- eters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the opti- mized structure is 0.258 dB.
基金supported by the National Natural Science Foundation of China(51572157,21902085,and 51702188)the Natural Science Foundation of Shandong Province(ZR2019QF012)+1 种基金the Fundamental Research Funds for the Central Universities(2018JC046)Young Scholars Program of Shandong University(2018WLJH25)。
文摘The application of antimony sulfide(Sb_(2)S_(3))has been limited mainly to the energy storage and photoelectric conversion fields.However,in this work,the application of Sb_(2)S_(3) is extended to the field of electromagnetic(EM)wave absorption for the first time.High-permittivity Sb_(2)S_(3) singlecrystal nanorods were prepared successfully and exhibited excellent performance,with a low reflection loss of -65.9 dB(13.0 GHz,3.8 mm)and an ultra-wide effective absorption bandwidth of 9.5 GHz(8.5-18.0 GHz,4.1 mm).After excluding the general absorption mechanisms,including conductive losses,interfacial polarization,and dipole polarization,the distinctive single-crystal volume polarization affected by shape anisotropy was proposed.This work not only meets the challenge of a single-component dielectric material design but also introduces a new concept for construction of efficient dielectric EM wave absorption material.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51072038, 50772025 and 21001035)NECT, Outstanding Youth Foundation of Heilongjiang Province (Grant No. JC201008)+4 种基金the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828)the Ministry of Science and Technology of China (Grant No. 2008DFR20420)the Fundamental Research Funds for the Central Universities (Grant Nos. HEUCFT1010, HEUCF101016, HEUCF20111124 and HEUCF101016)the National Basic Research Program of China (Grant No. 2007CB310500)Harbin Key Sci-Tech Project (Grant No. 2010AA4BG004)
文摘Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated. The reflect loss was less than -20 dB for all of the composites in different frequency ranges. The cube-like and walnut-like Fe3O4 composites exhibit improved complex permittivity and permeability and dual-frequency and wide bandwidth absorption characteristics, which is mainly attributed to the larger shape anisotropy. Such a high absorption property indicates that these porous Fe3O4 particles with various morphologies are very promising for electromagnetic wave absorptive materials.